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ABSTRACT

Hippocampal place cells form a spatial map by selectively firing at specific locations in an
animal’s environment1. Until recently the hippocampus appeared to implement a simple coding
scheme for position, in which each neuron is assigned to a single region of space in which
it is active1. Recently, new experiments revealed that the tuning of hippocampal neurons
to space is much less stereotyped than previously thought: in large environments, place
cells are active in multiple locations and their fields vary in shape and size across locations,
with distributions that differ substantially in different experiments2–7. It is unknown whether
these seemingly diverse observations can be explained in a unified manner, and whether
the heterogeneous statistics can reveal the mechanisms that determine the tuning of neural
activity to position. Here we show that a surprisingly simple mathematical model, in which firing
fields are generated by thresholding a realization of a random Gaussian process, explains the
statistical properties of neural activity in quantitative detail, in bats and rodents, and in one-,
two-, and three-dimensional environments of varying sizes. The model captures the statistics
of field arrangements, and further yields quantitative predictions on the statistics of field shapes
and topologies, which we verify. Thus, the seemingly diverse statistics arise from mathematical
principles that are common to different species and behavioral conditions. The underlying
Gaussian statistics are compatible with a picture in which the synaptic connections between
place cells and their inputs are random and highly unstructured.
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Main

A central goal of systems neuroscience is to characterize how neural systems represent informa-

tion about the world, or about the brain’s internal state. For several decades, much of the thinking

about neural population codes was motivated by reports on neurons with highly stereotyped

tuning functions. Neurons were often observed to have a smooth, typically unimodal tuning to

the encoded variable, centered around preferred stimuli that vary across the neural population8, 9.

Examples include the radially symmetric receptive fields of retinal ganglion cells10, receptive

fields of simple cells in the primary visual cortex11, 12, cosine tuning to movement direction in

the motor cortex13, unimodal fields of head direction cells14, and the fields of hippocampal place

cells in small environments1.

Experiments in the past decade, however, have uncovered neural response functions that

are much less stereotyped and regular than observed previously2, 3, 15–21. These recent findings

were enabled by high-throughput recording techniques which substantially reduced bias in the

selection of cells for analysis, as well as new technologies that enabled the monitoring of neural

activity in freely behaving animals, under reduced behavioral constraints6, 22–24.

Some of the most striking examples of irregular neural responses were recently identified

in area CA1 of the hippocampus2–7. The classical view of spatial coding by place cells in this

area has been that they are active in a single, compact region of space, and exhibit a stereotyped

bell-shaped tuning to position1, 25. Several recent experiments in bats and rodents have revealed,

however, that this picture breaks down in large environments. Place cells typically fire in multiple

locations and, furthermore, the multiple firing fields of individual cells, as well as those of

the whole population, vary in size and in their shape, which can deviate substantially from the

classical bell-shaped form2–7. It remains unknown, however, whether the irregular statistics of

place fields in bats and rodents can be described in terms of common mathematical principles,

and whether these statistics yield insights on the synaptic architecture that underlies spatial
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coding in hippocampal area CA1.

Here, we report that a surprisingly simple generative model accounts for highly detailed

features of place field statistics. We model place fields as derived from a realization of a random

Gaussian process over the spatial coordinates: a realization of the process is sampled for each

cell and is then thresholded and rectified, resulting in multiple, heterogeneous fields (Fig 1A). A

Gaussian process is a random function, whose values at any discrete set of positions are jointly

normal26. The statistics of a Gaussian process are uniquely determined by its mean, which we

set to zero without loss of generality as its choice is redundant with the choice of the threshold,

and by the spatial correlation function, which we assume to be translationally invariant.

Two lines of reasoning have led us to examine the above model. First, a Gaussian process

is the random process that maximizes entropy under constraints on the mean and the spatial

covariance function. Hence, our modelling choice invokes minimal assumptions other than a

specification of a place cell’s underlying input correlation structure27. Second, Gaussian statistics

arise when many independent random variables are summed. The summed presynaptic input into

area CA1 from area CA3 and entorhinal cortex is thus expected to be approximately Gaussian if

synaptic weights are predominantly random (Fig. 1; see supplementary information A)28. We

further discuss these motivations in the Discussion.

Field arrangements

Place field locations in the model are identified as the regions in space in which the Gaussian

process exceeds a given threshold. Extensive results exist on the statistics of these regions in

the mathematical literature, where they are called excursion sets26. A recent result of central

importance to this work is that threshold crossing statistics assume a universal form when the

spatial correlation function of the process obeys mild smoothness requirements, and the threshold

is sufficiently high29. Threshold-crossing statistics are then insensitive to the detailed structure
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of the correlation function, and depend only on two scalar parameters: the normalized threshold,

θ , defined as the ratio between the threshold and the standard deviation of the Gaussian process

(Eq. S2) and a correlation length, σ , which is derived from the spatial correlation function (Eq.

S3).

Specifically, the mean density of fields and the mean field size can both be expressed in terms

of σ and θ using the Kac-Rice formula30 for the threshold crossings of a Gaussian process (Eqs.

S20 and S21). Furthermore, the full distribution of field sizes acquires a universal form in the

limit of large θ , expressed as

P(s) =
2β

D
s(

2
D−1) exp

(
−β s

2
D

)
, (1)

where D is the dimensionality of the space over which the Gaussian process is defined, s is the

field size (length in one dimension, area in two dimensions, and volume in three dimensions;

1d, 2d, and 3d hereafter), and the single parameter β can be expressed in terms of σ and θ (Eq.

S25; see supplementary information B). In the 1d case (D = 1), this expression takes the form of

a Rayleigh distribution (Fig. 1C). Similarly, field gap statistics assume a universal form in the

high-threshold limit: threshold crossings are spatially uncorrelated and, consequently, gap sizes

follow an exponential distribution, with a mean that can be expressed in terms of σ and θ (see

methods). Thus, according to the model, the empirical distributions of CA1 field sizes and gaps

between fields should be jointly explained using the two parameters, σ and θ .

We began by examining place fields recently recorded in bats flying in a 200m-long tunnel,

where the highly stereotyped trajectory of the animals along the 1d track allowed for the gathering

of comprehensive statistics on the spatial arrangement of place fields6. We determined the two

parameters σ and θ by matching the means of the field sizes and gaps to the model in the data

from the 200m-long tunnel. This fitting procedure, based only on the means, was sufficient

to capture the full distributions of field sizes and gaps (Figs. 1C and 1D). This outcome was
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particularly striking for the field sizes, whose distribution had a distinctive, highly asymmetric

form.

Due to its highly asymmetric structure (Fig. 1C), the field size distribution was previously

fitted heuristically to a log-normal distribution, yet this approach lacked a principled rationale.

By contrast, in our model, the asymmetry is explained by the statistical dependencies between

locations of adjacent threshold crossings of the underlying random Gaussian process31. The

empirical field size distribution was more likely to arise from the Gaussian threshold-crossing

model than the best-fit log-normal distribution, even though the model had one fewer degree

of freedom (assessed via likelihood and parameter-aware likelihood based model performance

metrics: ∆LLR < 0, ∆BIC < 0, ∆AIC < 0; see methods). Furthermore, skew and kurtosis of the

log-field-size distribution were in agreement with the threshold crossing model, but not with the

log-normal distribution, according to which they should be close to zero (Fig. 1E; see methods).

Thus, the model captured subtle features of the distribution, beyond its first and second order

moments. As expected in the high-threshold limit, the distribution of gap sizes followed an

exponential distribution (Fig. 1D).

We subsequently tested the model’s ability to explain the statistics of place fields measured

in rodents running in long 1d tracks. Field size distributions extracted from experiments in

which mice ran in a 40m-long 1d virtual track5 were in qualitative agreement with the Rayleigh

distribution (Fig. 1F). We also analyzed the distribution of field sizes from an experiment in which

rats exlored a 48m-long 1d maze3. The distribution of field sizes was in quantitative agreement

with the distribution predicted by the model, with matching skew and kurtosis (Extended Data

Fig. 1).
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Place fields in two and three dimensions

Experimental data on place fields in rats navigating large 2d environments7 and bats in 3d rooms4

reveal place cells with multiple, heterogeneous place fields. Intriguingly, though, the experiments

uncover field size distributions that are distinct in one, two, and three dimensions. Building on

our initial findings in 1d environments, we examined the extension of the model to 2d and 3d

environments, where place fields are determined by excursion sets of a Gaussian process over the

higher-dimensional space. As in the 1d case, the model generated multiple, heterogeneous fields,

which were qualitatively similar to the ones observed experimentally (Figs. 2A-B and 2F-G).

Moreover, 1d slices through a multidimensional Gaussian process are themselves Gaussian

processes. Hence, field sizes in 1d slices through multidimensional firing fields are expected to

follow the same field size distribution as in the 1d case. To test this prediction, we examined

1d slices through 2d place fields measured in rats foraging in a 18.6 m2 arena (data from 20

cells recorded in7), and found that they were well fit by the Rayleigh distribution (Fig. 2C). We

further compared the model against a histogram of field areas from all cells (as reported in7).

The statistics precisely followed an exponential distribution as predicted by the model (Eq. 1,

D = 2; Fig. 2D). Finally, field counts were well fit by a Poisson distribution, as expected in the

high-threshold regime in which field locations are independent (Fig. 2E).

Next, we analyzed 3d place fields in bats navigating a large room of size 5.8×4.6×2.7 m34.

The model predicts that 2d slices through the 3d place fields should exhibit the same statistics

as those of fields in 2d environments, since these slices are also realizations of a thresholded

Gaussian process in two dimensions. The predictions for both 1d and 2d slices were verified

by the data (Figs. 2H-I), along with the distribution of the 3d field volumes (Fig. 2J), which

followed the prediction of Eq. 1 with D = 3. In an alternative model, in which field volumes and

peak firing rates were exactly matched to the empirical data, without the underlying Gaussian

statistics, distributions of 1d and 2d slice sizes did not match the data (Extended Data Fig. 2).
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In summary, the statistics of field arrangements in 1d, 2d, and 3d were explained in both

bats and rodents by the threshold crossings of Gaussian processes. In particular, the model

explained the different field size statistics that were observed across experiments in different

dimensionalities (Eq. 1 and Figs. 1C, 2D, and 2J). The generality of these results suggests that

common mechanisms, shared across species and dimensionalities, underlie the structure of the

hippocampal code for space.

Statistics of field shapes

The statistics of field sizes and gaps only reflect the statistics of field boundaries which, in the

model, correspond to threshold crossings. The model also makes quantitative predictions on

the statistics of field shapes, defined as the firing rate’s dependence on position within place

fields (Fig. 3A). These statistics are determined by the properites of the Gaussian process in the

threshold-crossing segments. First, according to the model, the firing rate within a given place

field may exhibit multiple local maxima, unlike in the classical picture of bell-shaped fields. The

predicted distribution of the number of local maxima across fields was in close agreement with

the empirical distribution of local maxima per field in bats flying in the 1d tunnel (Fig. 3B).

Second, the model predicts a positive correlation between the size of a field and its peak firing

rate, with an approximate power-law relation between these two quantities. The experimental

data confirmed this prediction, both in bats flying in the 1d tunnel (Fig. 3C) and bats flying in

the 3d environment (Fig. 3D). In both cases, the model not only predicted the qualitative relation

between field size and peak firing rate, but it also accurately predicted the power law coefficient

(Figs. 3C and 3D). Third, in the model, the slope of the firing rate at the boundaries of 1d place

fields follows a Rayleigh distribution32. This prediction was verified in the data (Fig. 3E). Fourth,

in bats flying in the 3d environment, the mean and Gaussian curvatures of iso-surfaces formed by

the boundary of 3d place fields were distributed in agreement with the predictions of the model
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(Extended Data Fig. 3). All the above predictions of the model were verified using the values of

σ and θ that were previously inferred based only on field arrangements, independent of field

shapes.

We next examined whether the model captures topological properties of the place fields,

using recent results on the Euler Characteristic (EC) of excursion sets of Gaussian processes. The

EC of the thresholded Gaussian process is a function of the number of connected components

and holes of various dimensions (see methods), and has a universal dependence on the threshold

which is specific to Gaussian processes26. An analytical expression has been obtained for this

quantity in terms of θ and σ . (This results has also been used to test for Gaussianity in the spatial

structure of the cosmic background microwave radiation, as well as other natural processes33–36.)

In the 1d case, the EC is simply equal to the number of connected components. The theory

provides an exact expression for the EC curve (Eq. S7), whose only dependence on the correlation

function is through the correlation length σ . We tested this prediction for place fields by placing

a varying threshold on the firing rates measured in bats flying in the 200m long tunnel, followed

by evaluation of the EC of the rectified fields. The resulting EC curve (Fig. 3F) was in excellent

agreement with the analytical prediction using the previously obtained value of σ .

In dimensions higher than one the EC depends not only on the number of connected com-

ponents but also on the number of holes of various dimensions within the fields. This results

in a non-monotonic dependence of the EC curve on the threshold, due to the emergence and

disappearance of holes. Here, too, the theory provides an exact analytical expression (Eq. S9)

for the expected EC curve. We tested this prediction on all measured firing fields in bats flying

in 3d4. The empirical EC curve was non-monotonic as predicted, and precisely followed the

analytical expression (Fig. 3G) using the previously obtained value of σ . This agreement is

specific to the Gaussian threshold crossing model, and was not reproduced by an alternative

model with matching joint statistics of field volumes and peak rates (Extended Data Fig. 2C).
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We also tested the EC curve prediction in 2d, on a data set of 20 cells from rats recorded in the 2d

megaspace7, and obtained excellent agreement with the analytical prediction (Eq. S8; Fig. 3H).

Parameter variation across experiments

Our analyses of data from 1d and 2d environments of varying sizes allow us to identify qualitative

trends across datasets, as a function of the environment size (Figs. 4A and 4B). We observe

that the correlation length, σ , increases sublinearly with the size of the environment, and the

normalized threshold, θ , decreases with the size of the environment (Fig. 4B). Together, these

trends induce an increase in the average number of fields with the size of the environment,

consistent with the observation of single firing fields per cell in small environments, and a

sublinear increase in their sizes (Extended Data Fig. 4).

While the two parameters jointly affect the field counts and the field sizes, the normalized

threshold also influences the heterogeneity in field shapes (Extended Data Fig. 5A). With

increasing θ , the fraction of multi-peaked fields decreases and the exponent of the power-law

relationship between the maximum firing rate and the field size approaches 2, as expected for

parabolic fields26 (Extended Data Figs. 5B and 5C). Thus, the model predicts greater stereotypy

of field shapes with increasing normalized threshold. As a result, and following the trend seen

in the data (Figs. 4A and 4B), field shapes are predicted to be more stereotyped in smaller

environments than in larger ones (Extended Data Figs. 5A-C). We tested this prediction on

place fields measured in bats flying in a short, 6m-long tunnel6. As predicted, field shapes were

more stereotyped than in the 200m-long tunnel, with statistics that quantitatively agreed with

the model (Figs. 4C and Extended Data Fig. 5D). In summary, the model accounts for the

different characteristics of CA1 spatial selectivity across environmental scales, ranging from

early experiments in small environments, where place cells typically had a single, bell-shaped

firing field1 to more recent experiments in large environments, where place cells had multiple
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firing fields with heterogeneous shapes3, 5–7.

Each one of the experimental data sets is well explained by a single choice of the values

of σ and θ , yet some variation in these parameters across cells and anatomical regions is to

be expected. For the length scale σ , our choice of a single value is motivated by the fact that

recordings were tightly localized anatomically in dorsal CA14, 6, 7, 37. In the data from bats flying

in the 1d tunnel, where comprehensive measurements allow for fine exploration of the statistics,

the number of place fields expressed by individual neurons, as well as their sizes, were observed

to be correlated in the two flying directions, despite remapping of the fields6. We hypothesized

that this correlation arises from variability in the threshold, θ . In agreement with this hypothesis,

an extended model with a distribution of thresholds accounted for the empirical correlations,

while remaining compatible with the distributions of field sizes and gaps obtained from the basic

model (Extended Data Fig. 6).

Discussion

The classical view of spatial coding in the hippocampus has been challenged by the recent

discoveries of heterogeneous and distributed CA1 response patterns in large environments. It was

unknown whether a unified mathematical framework can encompass the diverse statistics of these

irregular responses. Here, we identified such a framework, in which place fields are obtained from

the threshold crossings of a spatially fluctuating random process. The underlying randomness of

the Gaussian process enabled the model to explain in quantitative detail the variability in the

size of place fields and their spatial arrangement, as well as a range of geometric and topological

properties associated with the heterogeneous field shapes. Indeed, when constrained only on

the mean field size and count, the model precisely captured the statistics of shape variability,

which in principle could have had an independent origin. This surprising result suggests that

the different degrees of heterogeneity, observed across experiments, arise as a byproduct of
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mechanisms that regulate the field frequency and size. With only two parameters, the model

accounts for the seemingly diverse statistics observed in rodents and bats, and in environments of

varying sizes and dimensionalities. Therefore, the model allows for direct comparison between

the statistics observed in the different experiments, and suggests that they arise from common

underlying principles. A Gaussian process is the random process that maximizes entropy under

constraints on the mean and the spatial covariance function. Hence, the model invokes minimal

assumptions other than a specification of a place cell’s underlying input correlation structure27, 38.

At the same time, random Gaussian processes can generate a highly efficient coding scheme,

with capacity that increases exponentially with the number of neurons28. It will be interesting

to examine theoretically whether it is possible to obtain a coherent understanding of the trends

seen in the parameters across the different geometries (Fig. 4B) in light of a theory of efficient

coding28.

The success of the parsimonous model introduced here invites an exploration into its possible

mechanistic origin. The apparent stereotypy of place fields in small environments has motivated

a view of hippocampal spatial selectivity as arising from highly organized synaptic connectiv-

ity39–41. However, the irregular CA1 firing patterns in large environments are inconsistent with

this view. Our results indicate that CA1 place fields, in small and large environments alike, are

compatible with predominantly random synaptic connections into CA1. This is because random

projections from a sufficiently large number of spatially selective cells necessarily produce an

input to each CA1 cell that varies spatially as a realization of a random Gaussian process, due to

the multivariate central limit theorem (see supplementary information A). Gaussian statistics

arise robustly from random synaptic projections without the necessity to invoke highly specific

assumptions on the structure of spatial responses in the input layer. These can range from regular

tuning curves that tile the environment to heterogeneous and irregular tuning curves with a

distance-dependent covariance function (see supplementary information A). Hence, the broad
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success of the model across data sets and statistics suggests that randomness, rather than specific

design, governs the synaptic organization of inputs to CA1.

Recent experiments indicate that a dominant mode of plasticity in CA1 involves randomly

occurring modifications of synaptic projections from CA3, triggered by inputs from the entorhinal

cortex42–44. The randomness of the synaptic weights may be related to the cumulative effect of

many such non-Hebbian plasticity events. Since all the measurements analyzed in this work were

collected in highly familiar and uniform environments, it is possible that the stationarity of the

underlying Gaussian processes is specific to such conditions. We speculate that more intricate

features of the place cell code arise under richer behavioral conditions via activity-dependent

plasticity mechanisms acting on top of a scaffold of random synaptic weights.
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Fig. 1. Field arrangements of 1d place fields are explained by the thresholded Gaussian
process model. a, Top: example of place fields measured in bats flying in a 1d 200m-long
tunnel6. Bottom: firing rates in the model are generated by thresholding and rectifying a
realization of a random Gaussian process (gray). In all figures, green represents experimental
data, and orange represents the model. b, A simple neural architecture which gives rise to place
fields that follow the thresholded Gaussian process model. Presynaptic inputs from many
spatially selective neurons are summed with random synaptic weights, to create the input to each
CA1 place cell, followed by rectification. c, Field size distribution of bats in the 1d tunnel
compared against the field size distribution predicted by the model. Dotted line: approximate
analytical prediction of the field size distribution, valid for high thresholds (Rayleigh
distribution). Orange bars: precise predictions of the model, obtained from simulations (error
bars: standard deviation across simulations, see methods). Here and in all subsequent bar-plots,
the overlap between green bars (experiment) and orange bars (model) is represented in brown.
Inset: same data in semi-logarithmic scale. d, Distribution of consecutive field gaps in the
experiment compared against the distribution predicted by the model. Dashed line: analytical
prediction. e, Skew (left) and kurtosis (right) of the log-field-size distribution, obtained from
multiple simulations of the model and the best-fit heuristic log-normal distribution (gray). Each
simulation is matched to the size of the experimental data set. For the log-normal distribution,
the empirical skew and kurtosis are expected to be close to zero. Dashed line: skew and kurtosis
of the experimental distribution. f, Rayleigh distribution compared against place field size
distribution in four different mice, running in a 40m-long virtual track5.
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Fig. 2. Field arrangements of place fields in 2d and 3d spaces are explained by the
thresholded Gaussian process model. a-e, Model fits to 2d data from rats. a, Sample spatial
firing pattern of a CA1 cell, recorded in a rat navigating in a 18.6 m2 environment7. b, Model:
Random Gaussian process in 2d (left) is thresholded to generate firing fields, yielding the cell’s
spatial firing pattern (right). In all the panels below that show distributions, the vertical scale is
logarithmic and the color scheme for comparison between the model and the experiment is as in
Fig. 1C, 1D. c, Distribution of field lengths in 1D slices of 2d place fields (20 sample cells
from7). d, Distribution of place field areas from all cells in the experiment (experimental
histogram adapted from7). e, Distribution of field count per cell across the whole population of
recorded cells (experimental histogram adpated from7). f-j, Model fits to 3d data from bats. f,
Sample 3D firing pattern recorded in a bat CA1 cell during flight in a 5.8×4.6×2.7 m3 room4.
g, Visualization of 3D receptive fields generated by the model. h, Distribution of field lengths in
1D slices of bat 3D place fields (analysis performed on all recorded cells in4). i, Distribution of
field areas in 2D slices of the bat 3D place fields. j, Distribution of 3D field volumes in bats. As
the dimension increases, the distribution becomes more concentrated around zero, and develops
a longer tail.
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Fig. 3. Field shape related statistics of place fields are predicted by the thresholded
Gaussian process model across dimensions and species. a, Visualization of various field
shape related measurement in case of 1d fields. b, Distribution of the number of peaks in the
place fields of bats in the 200m-long tunnel6 compared to the model. Error bars: standard
deviation of the mean (model) and standard deviation across a range of smoothing parameters
(data, see methods). c, Joint distribution of log receptive field size (in m) and log maximal firing
rate (in Hz) obtained from the model (orange) and from experimentally measured bat place
fields in the 200m-long tunnel (green). Lines: power law relationship between the two
quantities, in the model and experiment. The coefficient γ is the slope of the best linear fit to the
distribution and represents the power law coefficient. The y-intercept of the fit is matched
between data and model to infer the linear gain factor. d, Same as in A, for place fields recorded
in bats flying in the 5.8×4.6×2.7 m3 room4. Field size is the cubic root of the place field
volume (in m). e, Absolute value of field slopes at their boundaries follow a Rayeligh
distribution. f, Euler characteristic (χ) as a function of extra thresholding of the place fields of
bats in the 200m-long tunnel (Dashed line: theoretical prediction, Dots: data). Inset illustrates
how adding an extra threshold (horizontal dashed line vs. solid line) can affect the number of
fields. g, Similar plot as D for bats in 3D environment4. h, Same as D,E in the 18.6m2 2d
environment (using 20 sample cells from rats7).
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Fig. 4. Parameter trends across experiments explain differences in heterogeneity. a,
Summary of parameters for the various experiments in spaces of varying dimension: 1d, bats
flying in a tunnel; 2d, rats navigating a large open arena; and 3d, bats flying in a room. b, Linear
scaling of logσ with the logarithm of the linear environment size in 1d (bats) and 2d (rats). c,
Joint distribution of log receptive field size, s (in m) and log maximal firing rate, f (in Hz),
plotted as in Fig. 3C, but in the 6m-long tunnel. In comparison with the 200m-long tunnel (Fig.
3C), the exponent characterizing the relationship between field size and maximal firing rate is
closer to 2, indicating that field shapes in the 6m-tunnel are more stereotyped than in the
200m-long tunnel, as expected due to the higher threshold. Inset: fields with multiple peaks are
practically absent, as predicted (compare with Fig. 3B). In panels B and C, γ is the slope of the
best linear fit to the data in logarithmic scales.
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Methods

Mathematical Notation

Throughout the main text, methods section, and supplementary information, we use the mathe-

matical notation defined below:

Symbol Description
L Length of one-dimensional (1D) environment

D Dimension of space

LD Volume of environment for D > 1

x Spatial coordinate

G P Gaussian process

h(x) Gaussian process input to CA1 cell

r(x− x′) Covariance function of h(x)

θ Normalized threshold

σ Correlation length

f (x) Firing rate of CA1 cells in the model

φ(·) Gaussian cumulative density function

N Field count per cell

s Field size

s̄ Field gap

χ Euler characteristic

Model details

Place fields are modeled as rectified realizations of a stationary Gaussian process over D dimen-

sional space (x ∈ RD) with 0 mean and stationary covariance function r(x− x′),

h(x)∼ G P
[
0,r(x− x′)

]
(S1)
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A sample h(x) from the Gaussian process can be thought of as input to a CA1 place cell. The

input is subsequently thresholded at a value θ
√

r(0) to generate the cell’s firing rate, which is

proportional to f (x), defined as

f (x) = max
(

h(x)−θ
√

r(0),0
)

(S2)

where θ is the normalized threshold, equal to the ratio between the threshold and the standard

deviation of the process. The correlation length of the Gaussian process is defined as26:

σ =

√
− r(0)

r′′(0)
(S3)

Thus, σ is equal to the ratio between the standard deviation of the process
√

r(0) and the

standard deviation of its derivative
√

−r′′(0)26. For simulations of the Gaussian process, we

used a transitionally invariant Gaussian correlation function.

Data processing

Firing rate measurements from bats in 1d and 3d environments were first rectified at 0.5 hz for de-

noising. In the 3d case, firing rates also went through a median filtering using scipy.ndimage

Python library with minimal (nearest neighbour) kernel of size 2 (place fields resolution = 10cm

on each axis) to eliminate salt-and-pepper noise while preserving field boundaries.

Parameter inference in 1d environments

The two parameters σ and θ were inferred by matching the means of the field size and the field

gap to those in the model via simulation in the data set from bats in the 200m6 (Figs. 1C and 1D,

Figs. 4A and 4B). In the dataset from bats in 6m-long tunnel (Extended Data Fig. 5D), most

cells had a single field and parameters were inferred by matching the mean field size and the

mean fraction of the environment in which place cells were active. For the dataset from bats in

the 130m-long tunnel and dataset from rats in the 48m-long maze, mean field size and mean
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field count were matched to infer the parameters3, 6 (Figs. 4A, 4B, Extended Data Fig. 1). For

rats in a 40m-long virtual track5 (Fig. 1F), where only a histogram of field sizes was available,

we directly fitted the parameter β of the approximate Rayleigh distribution (Eq. 1). Parameters

matched through simulation yielded excellent agreement with the analytical formulas in the 1d

case (Eqs. S21 and S22; see supplementary information).

Parameter inference in 2d environments

For rats in the 2d environments7 (Figs. 1C-E and Figs. 4A,B), parameters were inferred by fitting

the model to the mean field count and mean field size reported in7. When matching the mean

count, we took into account the systematic exclusion of cells with zero fields from experimental

observations by fitting the model to the distribution of field counts, conditioned on the existence

of at least one field. For the Poisson distribution (valid in the high threshold regime), the mean

⟨N⟩experiment of the conditioned distribution, which is matched to the experimental data, is then

⟨N⟩experiment =
⟨N⟩

1− exp(−⟨N⟩) (S4)

where ⟨N⟩ is the unconditioned mean. Analysis of the Euler Characteristic in the large 2D

environment7 (Fig. 2H) was performed on a sample of firing rate maps from 20 cells shared with

us by the authors of the manuscript. All other 2d results are based on statistics from the full data

set, as reported in7.

Parameter inference in 3d environment

For bats in a 3d environment4 (Figs. 2H-J and Fig. 4A) the parameters σ and θ were inferred by

matching the mean field volume and the mean fraction of the volume in which place cells were

active, based on the full rate maps.
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Fields in 1d

Fields were defined as connected components of non-zero activity, and gaps as connected

components of zero activity (Figs. 1C 1D, 2B, 2E). When generating histograms based on the

model (Figs. 1C, 2C, 2H-2J, 4C), errors bars were obtained by performing 104 simulations

of random fields using the model, each matching the number of cells to the data. Field size

distributions from model simulations in 1d were compared against the best fit log-normal

distribution by first generating a kernel density estimate of the field size distribution from the

simulations (scipy.stats.gaussian_kde). The model has one less degree of freedom

than the two-parameter log-normal distribution, since constraining the model parameters to also

fit the gap size distribution reduces the parameter space to one dimension. Nevertheless, the

log likelihood test indicated that the model fits the data better than the log-normal distribution

(∆LLR =−50.3 < 0). Differences in model complexity aware log likelihoods were measured

using the Bayesian Information (BIC) and Akaike Information (AIC) criteria, yielding ∆BIC =

−109.1 < 0 and ∆AIC = −104.5 < 0, which implies that the data fits the model better than

log-normal.

Kurtosis and skew

Kurtosis, quantifying the heaviness of distribution tails, was defined as

Kurtosis =
m4

m2
2
−3 (S5)

where m4 and m2 are the fourth and second moments of the distribution of log-field sizes,

respectively. Skew, quantifying the asymmetry of the distribution was defined as

Skew =
m3

m3/2
2

(S6)

where m3 and m2 are the third and second moments of the log-field-size distribution, respectively.

Both measures vanish for a log-normal distribution, since in that case the logarithrm of field

sizes is normally distributed.
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Fields in 3d

Field statistics in 3D were measured from the firing rate data from4. To measure field volumes,

connected components in the 3D volumetric fields were identified using the Python function

scipy.ndimage.label, which identifies and labels connected regions in n-dimensional

arrays. Fields with volume larger than 3 standard deviations from the mean were removed as

outliers, as they are likely to result from merging of two or more fields. These large outliers were

also removed when analysing the slices of the 3D fields (Figs. 2D, 2E, 2F).

Number of local peaks within a field.

Maxima in each field from 1d data were identified using the Python function

scipy.signal.find_peaks, which finds local peaks in a 1D array. Incomplete fields

at boundaries were removed. To filter out spurious maximas in the data arising from noisy

assessment of the firing rate, we first applied a Gaussian smoothing with a standard deviation

ranging from 0.5m to 1m in the case of bats flying in a 200m tunnel, and a Gaussian smoothing

with a standard deviation ranging from 0.3m to 0.6m in the case of bats flying in a 6m tunnel.

Local peak count distribution was calculated for the smoothed fields in each case and mean and

standard deviation are reported. The error bars in the model represent the standard deviation

across independent simulations (Fig 3B, 4C).

Maximum firing rate vs. field width

Maximum firing rates in Figs. 3C, 3D were defined as the maximum rate observed in each

field within its connected region. In the 1d data (Fig. 3C), fields were rectified by a small

threshold (1 Hz) to eliminate spurious measurements arising from regions in which the firing

rate measurement is unreliable (note that the Gaussian threshold crossing model is applicable

for the rectified data). The power law coefficient extracted from the data was insensitive to the

choice of the threshold above this value (Extended Data Fig. 7). The y-intercept of the linear fit
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on the log-log plot was matched to eliminate the effect of the linear gain factor.

Boundary slopes

Field boundary slopes were extracted by fitting a line between the two consecutive samples of

the firing rate (separated by 0.1 m) at the boundary of each rectified field, and measuring its slope

(Fig 3E).

Euler characteristics

The Euler characteristic (EC) is a topological invariant that can be expressed as the alternating

sum of Betti numbers. The 0-th order Betti number is equal to the number of connected

components in a topological space, and the n-th order Betti number is equal to the number

of n-dimensional holes. The EC χ of a Gaussian process in D dimensions has a universal

form, insensitive to the structure of the underlying covariance function (under mild regularity

requirements,26):

D = 1 =⇒ ⟨χ⟩=
[
(L/σ)

2π

]
e
−θ2

2 +(1−φ(θ)) , (S7)

D = 2 =⇒ ⟨χ⟩=
[
(L/σ)2

(2π)3/2 θ +
2(L/σ)

2π

]
e
−θ2

2 +(1−φ(θ)) , (S8)

D = 3 =⇒ ⟨χ⟩=
[
(L/σ)3

(2π)2

(
θ

2 −1
)
+

3(L/σ)2

(2π)3/2 θ +
3(L/σ)

2π

]
e
−θ2

2 +(1−φ(θ)) , (S9)

where φ is the Gaussian CDF function. Empirical Euler characteristics (EC) were measured

using the Gudhi python library by taking the alternating sum of Betti numbers. The mean

maximum firing rate was normalized in the data to match that of the model to determine the

linear gain value before calculating the EC.
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End notes
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Extended Data Fig. 1. a, Distribution of (log) field sizes measured in rats navigating a
48 m-long 1d maze3 along with distribution arising from the model (σ = 0.34, θ = 1.8), fitted to
match mean field size and count observed in the data. Fields in data larger than three times the
standard deviation were removed as outliers. The empirical distribution matches the model
better than the heuristic exponential distribution proposed in45 (likelihood test:
∆ logLikelihood =−83.1 < 0). b-c, Skew/Kurtosis distribution of log field size obtained from
multiple simulations of the model (orange) and the heuristic exponential distribution (gray)
compared against that extracted from the experimental data (vertical green dashed line). The
empirical fields were required to be larger than 15cm in3. We applied the same cutoff on the
fields from to the model to match the distribution obtained from the data. Note that this affects
the distribution of skew and kurtosis.
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Extended Data Fig. 2. Alternative model for comparison against the thresholded Gaussian
process model in 3d. Firing fields in the alternative model are spherical, while the joint
distribution of field volumes and maximum-firing rates exactly matches the empirical
distribution. More precisely, for each field in the data, we created a corresponding field in the
model with spherical support and matching volume. These fields are not allowed to overlap but
are otherwise randomly placed since the measurement of field sizes in the slices and the
expected Euler characteristics are independent of the field placements. The firing rate profile for
each of these fields was modeled as a quadratic function with amplitude exactly matching that of
the field in data. a, Discrepancy between areas of 2d slices through 3d fields in data and in the
alternative model (logarithmic vertical scale). b, Discrepancy between length of 1d slices
through 3d fields in data and in the alternative model (logarithmic vertical scale). In the null
model, the radius of each spherical field is distributed as Rayleigh distribution, which implies
that the length of active portions of 1d slices follows a half-normal distribution. c, Comparison
between Euler characteristics of the thresholded Gaussian process model (matching the
empirical data, Fig 3G), and Euler characteristics arising from the alternative model.
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Extended Data Fig. 3. Distribution of mean curvature (a) and Gaussian curvature (b) of 3d
place field boundaries in data and model (logarthmic vertical scale). The boundary surface for
each field was first identified and represented as a two-dimensional array Z, where each point
(x,y,z) of the surface was mapped to position (x,y) in the array containing the z-value of the
surface points. The mean and Gaussian curvatures of the isosurface representing the boundaries
of the 3D fields were then calculated using the following operators46: Gaussian curvature (K) is
defined as:

K =
∂xx∂yy −∂ 2

xy

(1+∂ 2
x +∂ 2

y )
2

and mean curvature (H) is defined as:

H =
(1+∂ 2

x )∂yy +(1+∂ 2
y )∂xx −2∂x∂y∂xy

2(1+∂ 2
x +∂ 2

y )
3/2

where ∂x, ∂y, ∂xx, ∂yy, and ∂xy are the first and second-order partial derivatives of the surface
represented by array Z with respect to x and y. The partial derivatives were computed using the
numpy.gradient function, which calculates the numerical gradients of the input array.
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Extended Data Fig. 4. a, Linear scaling of logarithm of linear field sizes (in m) with the
logarithm of the linear environment size (in m) in 1D (bats)6 and 2D (rats)7. b, Linear scaling of
logarithm of field counts with the logarithm of the linear environment volume (length in 1d and
area in 2d) in 1d (bats)6 and 2d (rats)7. In both panels, γ is the slope of the best linear fit to the
data in logarithmic scales.
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Extended Data Fig. 5. a, Visualization of sample field shapes generated by the model ranging
from low to high threshold regime (left to right. The intermediate value of θ = 1.1 is the
normalized threshold inferred from recordings in the 200m-long tunnel). In all cases, fields were
randomly selected. b, Predicted percentage of cells with more than one local peak, as a function
of the normalized threshold. c, Predicted logarithmic slope of field width vs. max. firing rate, as
a function of the normalized threshold. It can be shown that in the limit of very high threshold,
fields are parabolic and the logarithmic slope approaches 226. d, While the theory predicts that
field shapes are more stereotyped for higher thresholds as described in panels A,B, it predicts
that field widths follow the Rayleigh distribution for large thresholds. Therefore, the variability
in field widths relative to their mean is insensitive to the threshold. This is corroborated by the
empirical distribution of field widths from bats flying in a 6 m-long tunnel. Note that the
measurement is noisy due to the small number of cells (40 recorded cells; peak count in the
figure is 8; the distributions have no significant difference; K-S test: p-value=0.6, k-s stat=0.1).
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Extended Data Fig. 6. a, Illustration of how variability in the normalized threshold across cells
leads to correlated field counts and field sizes in the two flight directions along the 1d tunnel.
Neurons with lower threshold will have more place fields on average, when the bat flies along
both directions of the tunnel. Likewise, neurons with lower threshold will have larger field size
on average, when the bat flies along both directions of the tunnel. b, Scatter plot (blue) and
correlation of field counts obtained from the model in two different samples (representing
forward and backwards directions) of fields with fixed noisy threshold. With a distribution of
thresholds, the model matches the empirical correlation between field counts in bats flying in the
forward and backward directions (parameters chosen as explained in D). c, Scatter plot (blue)
and correlation of median field size per cell in two different samples of fields with fixed noisy
threshold. With a distribution of thresholds, the model matches the empirical correlation
between field sizes in the two flying directions, while simultaneously matching the correlation in
field counts (parameters chosen as explained in D). d, The distribution of θ in the extended
model with variability in the threshold across cells. θ is sampled from a skew-normal
distribution conditioned to be positive, with mean matching the single inferred θ in case of bats
in 1d tunnel. The skew normal distribution has two remaining parameters after fixing the mean,
which were set to match the correlation between median field count and median field size as
reported in6. e, Field size distribution under the variable threshold model matches the
distribution of field sizes in the data. f, Field gap distribution in the model matches that of the
data and further explains (without additional fitting) the slightly heavier tail in the empirical
distribution in comparison with the fit to an exponential distribution (compare with Fig. 1D).

38/44

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2024. ; https://doi.org/10.1101/2024.06.11.597569doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.11.597569
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 1 2 3 4 5

Thresholding range (hz)

0.25

0.50

0.75

1.00

1.25

1.50

In
fe

rr
ed

sl
op

es
Slope*=1.42

Extended Data Fig. 7. Slope of the linear fit between log field size and log maximum firing rate,
evaluated for the data from bats flying in the 200 m tunnel using a range of rectification
parameters. For rectification parameters above 1 Hz the slope rapidly stabilizes on a consistent
value.
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Supplementary Information

A. Derivation of Gaussian process input to CA1 cells

Here we illustrate how random summation of presynaptic inputs into CA1 cells leads to Gaussian

statistics, and elucidate how the spatial correlation function of the Gaussian process is determined

by the input statistics. We assume, for simplicity, completely independent weights, yet Gaussian

statistics can arise also under broader conditions, in which there is partial correlation between

groups of summed variables that decays sufficiently rapidly across a functional axis within the

input population47.

Consider a population i = 1 . . .N of spatially selective neurons presynpatic to a CA1 place cell

with bounded spatial response function ui(x) for x ∈ RD in D dimensions. For simplicity we

consider these response functions to have zero mean, whereas in a more realistic setting ui can

stand for the deviation of the firing rate from its mean, and approximate balancing of the mean

(which is interchangeable also with the choice of threshold in our model) may be obtained by

other mechanisms, such as mutual lateral inhibition or homeostatic regulation of excitatory and

inhibitory inputs.

We consider first, for simplicity, a scenario in which all input neurons have the same tuning curve

up to translation, with preferred firing locations xi that uniformly and densely tile the space:

ui(x) = u0(x− xi) (S10)

The input to the CA1 cell, h(x) is a weighted linear sum of the activity of the presynpatic cell

outputs:

h(x) =
N

∑
i=1

Wiui(x) (S11)

where we assume that the weights Wi are drawn independently from a random distribution p(W )

with zero mean, and a finite second moment. Using the central limit theorem for multidimensional
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stimuli48, 49, it is straightforward to see that for any discrete set of locations xα , h(xi) are jointly

distributed as multivariate normal in the large N limit. Hence, h(x) is a Gaussian process in this

limit.

The covariance function of the Gaussian process (which uniquely determines all of its properties)

must be translationally invariant, due to our assumption of uniform tiling of inputs in the input

layer. Indeed,

〈
h(x)h(x′)

〉
=

N

∑
i, j=1

〈
WiWj

〉
ui(x)ui(x′) = var(w)∑

i=1
ui(x)ui(x′)

= var(w) · r(x′− x), (S12)

where the angular brackets represent an average over realizations of the random synaptic weights,

and r is the spatial covariance of the neural population response. Here, r is proportional to the

auto-correlation of the single neuron tuning curve:

r(∆x) = ρ

∫
dxu0 (x)u0 (x+∆x) (S13)

where ρ is the spatial density of receptive field centers. Specifically, if individual tuning curves

are shaped as Gaussian firing fields, r(∆x) is a Gaussian with a width equal to twice the width of

the individual firing fields.

Heterogeneous tuning curves

Similar results hold for heterogeneous tuning curves. We assume that the tuning curves of

individual neurons are sampled from a distribution of shapes, parameterized by a random

variable α which is independently chosen for each neuron (α can be scalar or multidimensional,

discrete or continuous). For each neuron i,

ui(x) = u0(x− xi;αi) (S14)

where xi is drawn from a a uniform distribution in space and αi is the shape parameter of neuron

i. Under these assumptions, h(x) is a sum over many independent random functions, which
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becomes distributed in the large N limit as a Gaussian process due to the central limit theory. A

similar derivation as above yields

〈
h(x)h(x′)

〉
= var(w) · r(x′− x), (S15)

where r(∆x) is proportional to the auto-correlation of the tuning curve, averaged over the

distribution of receptive field shapes:

r(∆x) = ρ

〈∫
dxu0 (x;α)u0 (x+∆x;α)

〉
α

(S16)

where ⟨⟩α represents an average over realizations of the shape parameter α . Qualitatively, in

both scenarios discussed above, the central limit theory becomes valid when each CA1 neuron

receives, within its place fields, active presynaptic inputs from many spatially selective cells.

B. Field statistics

An extensive body of mathematical results exist for the statistics of excursion sets of Gaussian

processes. In this section we explain how a small subset of the results are obtained. Full

derivations of all the results are found in26.

Field statistics in 1D

Field counts in 1d can be exactly derived using the Kac-Rice formula32,

⟨N⟩= 1
2

∫
L

〈
| f ′(x)|

∣∣ f (x) = θ
√

r(0)
〉

dx (S17)

where f (x) is a random process with a well defined derivative. Specifically, in our model f (x) is

a 0 mean, stationary Gaussian process, and consequently f ′(x) is a 0 mean stationary Gaussian

process as well. To calculate the integrand, we first compute the covariance matrix associated

with the joint distribution of f (x) and f ′(x),

Cx =

( 〈
f (x)2〉 ⟨ f (x) f ′(x)⟩

⟨ f ′(x) f (x)⟩
〈

f ′(x)2〉 ) (S18)
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Using stationarity, we have:

(i)
〈

f (x)2〉= r(0)

(ii)
〈

f (x) f ′(x)
〉
=

1
2

∂ 2

∂x2

〈
f (x)2〉= 1

2
∂ 2

∂x2 r(0) = 0

(iii)
〈

f ′(x)2〉= ∂ 2

∂x1∂x2
r(x1 − x2)

∣∣
x1=x2

=−r′′(0)

Thus,

Cx =

(
r(0) 0

0 −r′′(0)

)
(S19)

Using (S19) we can calculate the expectation inside the integral,〈
| f ′(x)|

∣∣ f (x) = θ
√

r(0)
〉

=
1

2π
√

−r(0)r′′(0)

∫
∞

−∞

| f ′(x)|exp

(
−−r′′(0) f (x)2 + r(0) f ′(x)2

−2r′′(0)r(0)

)
δ
(

f (x) = θ
√

r(0)
)

dx

=
e−θ 2/2√
2πr(0)

· 1√
2πr′′(0)

∫
∞

−∞

| f ′(x)|exp

(
− 1
−2r′′(0)

f ′(x)2

)
dx

=
e−θ 2/2√
2πr(0)

·
√

−2r′′(0)
π

=
e−θ 2/2

π

√
−r′′(0)

r(0)

Therefore, the final result for ⟨N⟩ is:

⟨N⟩= 1
2π

∫
L

√
−r′′(0)

r(0)
e−θ 2/2 dx =

Le−θ 2/2

2πσ
(S20)

Next, assuming that the environment is large compared to the correlation length, the portion

of the environment in which a cell is active is L(1−φ(θ)). This, together with the mean field

count can be used to calculate the mean field size s and the mean gap between the fields s̄ as:

⟨s⟩= 2πσ (1−φ(θ))e
θ2
2 (S21)

⟨s̄⟩= 2πσφ(θ)e
θ2
2 (S22)

Simulations were in excellent agreement with all these expressions.
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Field statistics in higher dimensions

In higher dimensions, precise analytical expressions are not available for the mean field count

and size. We relied on simulations to determine the parameters σ and θ that match the mean

size and the mean field count, as described in Methods. A qualitative understanding of these

relationships can be obtained using an approximation which is valid for high thresholds, obtained

by retaining the leading order term in the expression for the Euler characteristics (see26 for more

details on this approximation):

⟨N⟩= (L/σ)D

(2π)
D+1

2
θ

D−1 exp
(
−θ 2

2

)
, (S23)

where LD is the volume of the environment.

The mean field size is then approximated by

⟨s⟩=
√

2π
(
2πσ

2)D
2 θ

1−D (1−φ(θ))e
θ2
2 (S24)

Distributions in the high threshold regime

As described in the main text, distributions related to the field arrangements acquire a universal

form in the high threshold regime. The field count is Poisson, in all dimensions, with a mean

given by Eq. S23. This is equivalent to the fact that the field gaps in 1d are exponentially

distributed. Similarly we can approximate the full field-size distribution as in the main text (Eq.

1) by:

P(s) =
2β

D
s(

2
D−1) exp

(
−β s

2
D

)
Furthermore, we can relate β to the parameters σ and θ of the model through the analytic forms

for the mean field size (Eqs. S22 and S24). To that end, first, observe that s2/D is exponentially

distributed with an expectation
〈

s2/D
〉
= 1/β , implying that ⟨s⟩= Γ(D/2+1)β−D/2 using the

moment generating function of the exponential distribution. Therefore:

β =

[
Γ

(
D
2
+1
)
⟨s⟩
] 2

D

(S25)
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