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Abstract

The efficient coding approach proposes that neural systems represent as much sensory

information as biological constraints allow. It aims at formalizing encoding as a constrained

optimal process. A different approach, that aims at formalizing decoding, proposes that neu-

ral systems instantiate a generative model of the sensory world. Here, we put forth a norma-

tive framework that characterizes neural systems as jointly optimizing encoding and

decoding. It takes the form of a variational autoencoder: sensory stimuli are encoded in the

noisy activity of neurons to be interpreted by a flexible decoder; encoding must allow for an

accurate stimulus reconstruction from neural activity. Jointly, neural activity is required to

represent the statistics of latent features which are mapped by the decoder into distributions

over sensory stimuli; decoding correspondingly optimizes the accuracy of the generative

model. This framework yields in a family of encoding-decoding models, which result in

equally accurate generative models, indexed by a measure of the stimulus-induced devia-

tion of neural activity from the marginal distribution over neural activity. Each member of this

family predicts a specific relation between properties of the sensory neurons—such as the

arrangement of the tuning curve means (preferred stimuli) and widths (degrees of selectiv-

ity) in the population—as a function of the statistics of the sensory world. Our approach thus

generalizes the efficient coding approach. Notably, here, the form of the constraint on the

optimization derives from the requirement of an accurate generative model, while it is arbi-

trary in efficient coding models. Moreover, solutions do not require the knowledge of the

stimulus distribution, but are learned on the basis of data samples; the constraint further

acts as regularizer, allowing the model to generalize beyond the training data. Finally, we

characterize the family of models we obtain through alternate measures of performance,

such as the error in stimulus reconstruction. We find that a range of models admits compara-

ble performance; in particular, a population of sensory neurons with broad tuning curves as

observed experimentally yields both low reconstruction stimulus error and an accurate gen-

erative model that generalizes robustly to unseen data.
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Author summary

Our brain represents the sensory world in the activity of populations of neurons. Two the-

ories have addressed the nature of these representations. The first theory—efficient cod-

ing—posits that neurons encode as much information as possible about sensory stimuli,

subject to resource constraints such as limits on energy consumption. The second one—

generative modeling—focuses on decoding, and is organized around the idea that neural

activity plays the role of a latent variable from which sensory stimuli can be simulated.

Our work subsumes the two approaches in a unifying framework based on the mathemat-

ics of variational autoencoders. Unlike in efficient coding, which assumes full knowledge

of stimulus statistics, here representations are learned from examples, in a joint optimiza-

tion of encoding and decoding. This new framework yields a range of optimal representa-

tions, corresponding to different models of neural selectivity and reconstruction

performances, depending on the resource constraint. The form of the constraint is not

arbitrary but derives from the optimization framework, and its strength tunes the ability

of the model to generalize beyond the training example. Central to the approach, and to

the nature of the representations it implies, is the interplay of encoding and decoding,

itself central to brain processing.

Introduction

Normative models in neuroscience describe stimulus representation and information trans-

mission in the brain in terms of optimality principles. Among these, the efficient coding prin-

ciple [1] posits that neural responses are set so as to maximize the information about external

stimuli, subject to biological resource constraints. Despite this minimal assumption, this

hypothesis has been successful in predicting neural responses to natural stimuli in various sen-

sory areas [2–7]. The approach consists in specifying an encoding model as a stochastic map

between stimuli and neural responses. The parameters of this model are then chosen so as to

optimize a function that quantifies the coding performance, e.g., the mutual information

between stimuli and neural responses. This optimization is carried out under a metabolic cost

proportional, e.g., to the energy needed to emit a spike [8, 9]. The decoding process is assumed

to be ideal and is carried out in a Bayesian framework: prior knowledge about the environment

is combined with the evidence from neural activity to form a posterior belief about the stimu-

lus [10–12].

The idea that the brain is capable of manipulating probabilities and uncertainty dates back

to Helmoltz’s view of perception as an inference process, in which the brain holds an internal

statistical model of sensory inputs [13]. Mathematically, such an internal model can be formal-

ized as a generative model in which stimuli are simulated by sampling from a distribution con-

ditioned by one of a set of ‘latent,’ elementary features [14, 15]. In the generative process, a

realization of latent features, i.e., a neural activity pattern, is associated to a distribution of sti-

muli, i.e., a likely sensory experience, in the form of a conditional probability distribution.

These features can be chosen so as to allow for a semantic interpretation, such as oriented

edges or textures in generative models of natural images [16–18], but this does not have to be

the case [19]. It is then assumed that the role of sensory areas is to perform statistical inference

by computing the posterior distribution over the latent features conditioned on the sensory

observation, thereby ‘inverting’ the internal model. This posterior distribution is assumed to

be represented in the neural activity, and different representation schemes have been proposed
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[20–22]. Thus, as opposed to the efficient coding approach, which prescribes a stochastic map-

ping from stimulus to neural activity, the generative model approach prescribes the inverse

process: from latent features, encoded in neural activity, to (simulated) sensory stimuli.

Here, we consider an extended efficient coding approach: while, typically, only the sensory

encoding process is optimized, we consider jointly the encoding and decoding processes. In

addition to a class of encoding transformations from stimuli to neural responses in a sensory

area, we assume a class of generative models implemented downstream. These define maps

from neural activity patterns, corresponding to realizations of the latent variables, to distribu-

tions over stimuli. Optimality is achieved when the generative distribution matches the true

distribution of stimuli in the environment. If one assumes that the encoder and the decoder

are jointly optimized in this framework, the system takes on the structure of a variational auto-

encoder (VAE) [23–25].

Similarly to the classical efficient coding framework, here the encoder is set so as to maxi-

mize a variational approximation to the mutual information between stimuli and neural

responses under a constraint on the neural resources. However, an important aspect of this

formulation is that the constraint, rather than being imposed by hand, is a direct consequence

of the assumption of an optimal internal model. This constraint is obtained as the statistical

distance between the stimulus-evoked distribution of neural activity and the marginal distribu-

tion of neural activity assumed by the generative model. Furthermore, solutions do not require

knowledge of the distribution of stimuli, as is the case in models of efficient coding, which

posit optimal decoding through Bayesian inversion of the encoding process; here, solutions

are learned on the basis of a limited volume of data samples [26, 27].

We apply our theoretical framework to the study of a population coding model with neu-

rons with classical, bell-shaped tuning curves. By capitalizing on recent advances in the VAE

literature, we solve the optimization problem as a function of the constraint on neural

resources: we obtain a family of solutions which yield equally accurate generative models [28].

However, these solutions make different predictions on the corresponding neural representa-

tions, with different arrangements of tuning curves and statistics of prior over neural activity,

as well as different predictions on the nature of coding and generalization. Related approaches

have been explored in the literature, and predictions about the optimal allocation of coding

resources, i.e., the tuning curves, as a function of the stimulus distribution have been derived,

both at the single cell [2, 4, 29, 30] and at the population level [10, 31–35]. We examine how, in

our framework, the optimal allocation of coding resources as a function of the statistics of sti-

muli varies as a function of the constraint. We show that our results subsume earlier predic-

tions. In particular, we observe that solutions with broad tuning curves emerge without

further constraints imposed by hand. These solutions feature coding performance which cap-

tures the statistics of the stimulus distribution and generalizes beyond the training dataset.

Our results illustrate the way in which the interplay between encoder and decoder can shape

the neural representations of sensory stimuli.

Materials and methods

In what follows, we denote vectors in bold font and scalars in regular font. We denote by hf
(z)ip(z) the expectation of a function f of a random variable z distributed according to p(z),

h f ðzÞipðzÞ ¼
Z

dzpðzÞf ðzÞ: ð1Þ
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Generative model (decoder)

We assume that the brain holds an internal generative model of the environment (Fig 1, left).

This model is specified by the joint probability of the neural activity of N neurons, r = {r1, . . .,

rN}, and a scalar sensory stimulus, x, pψ(r, x), where ψ denotes a set of parameters. The neural

activity is viewed as a latent variable, sampled from a prior distribution, pψ(r). Given the neural

activity, or latent state, a ‘decoder’ maps it to a distribution over stimuli, pψ(x|r). This process

specifies likely sensory experiences corresponding to a neural activity pattern, according to the

generative model. We assume that the same generative process, which outputs a simulated

quantity, x, is used by the brain when, e.g., producing an estimate in the context of a behavioral

task.

We consider neural activity over short time intervals, such that each neuron either emits

one spike or is silent; this assumption is valid in scenarios when sensory coding occurs on a

short time and have been largely studied in the literature (see, e.g., work on maximum entropy

models [36, 37] or generalized linear models [38].) The set of possible activity patterns is then

the set of binary vectors, r = (r1, r2, . . ., rN), where ri 2 {0, 1}; in what follows, the sum ∑r �

denotes the sum over these 2N binary patterns. We model the prior distribution over neural

activity as the maximum-entropy distribution constrained by the first- and second-order sta-

tistics, a model which has been proposed as a model of the distribution of activity in neural sys-

tems, e.g., in retina and in cortex [36]. In the case of binary patterns, this maximum-entropy

Fig 1. Model architecture. Left: generative model. In the generative model (purple), a neural activity pattern (white and black circles), sampled from the

prior distribution (Ising model), pψ(r), is mapped by the decoder to a probability distribution over stimuli, pψ(x|r) (dashed purple curve), parametrized by

functions of the activity patterns (here, mean and variance of a Gaussian distribution). The sum of the decoder output distributions, weighted by the prior

over neural activity, defines the generative distribution (solid purple curve). The objective of the generative model is to produce stimuli according to the

stimulus distribution in the environment, π(x) (green curve). In order to do so, the posterior distribution over neural activity, given external stimuli, is

approximated by an encoder, qθ(r|x) (right, blue). Neurons emit spikes according to bell-shaped tuning curves (grey curves) in response to a stimulus, x
(green dot), drawn from the stimulus distribution π(x) (green curve). The population response consists in a binary neural activity pattern, r (white and

black circles). The two models are trained such as to match the generative and stimulus distributions; this objective is approximated by minimizing two loss

functions. The distortion, D, maximizes the likelihood of the observed stimulus after the encoding-decoding process (upper dashed black arrow). The rate,

R, minimizes the Kullback-Leibler divergence between the conditional encoding distribution and the marginal (prior) distribution of neural activity of the

generative model (bottom dashed black arrow).

https://doi.org/10.1371/journal.pcbi.1012240.g001
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distribution takes the form of an Ising model, or Boltzmann machine,

pcðrÞ ¼ exp ðhTrþ rTJr � log ZÞ; ð2Þ

where h is the vector of biases, J is the matrix of couplings (with our choice of parametrization,

the diagonal elements of J vanish), and Z = ∑r exp(hTr + rTJ r) is a normalization constant

(also called partition function). Throughout the paper, we employ Eq (2) as the prior distribu-

tion of neural activity, which allows for correlations among neurons. The only exception is in

S3 Fig, where we illustrate the consequences of choosing a less flexible distribution, i.e., a prod-

uct of N independent Bernoulli distributions, obtained by setting to 0 all entries of the coupling

matrix, J.
On the basis of experimental findings, it has been suggested that the brain encodes a proba-

bility distribution of the stimulus, rather than a simple point estimate [20, 39]. We follow this

view by assuming that the generative model encodes a probability distribution over stimuli in

a parametric form, with parameters obtained as flexible functions of the neural activity pattern.

We consider two forms of generative distributions. First, we model the generative distribution

as a simple Gaussian, by assuming that the decoder maps activity patterns to a mean and a var-

iance,

pcðxjrÞ ¼ N ðm�ðrÞ; s�ðrÞÞ; ð3Þ

we parameterize these functions as two-layer neural networks, and we denote by ϕ the set of

weights and biases in the network. Second, to account for heavy-tail behavior of some natural

stimulus distributions, we posit that the brain represents mean and variance in a logarithmic

scale. Thus, we also consider a log-normal distribution whose mean and variance of the loga-

rithm of the stimulus values are parametrized as two-layer neural networks,

pcðxjrÞ ¼ LN ðm�ðrÞ; s�ðrÞÞ: ð4Þ

The parameters of the generative distribution and of the prior, ψ = {ϕ, h, J}, constitute the full

set of parameters of the generative model.

With this parametrization choices, for N neurons the distribution pψ(x) = ∑r pψ(x|r)pψ(r) is

a mixture of 2N normal or log-normal distributions, and is thus highly flexible. (In the Gauss-

ian case, it has been shown that a well-chosen Gaussian mixture can be used to approximate

any smooth density function [40, 41].) We will denote the decoder as ‘Gaussian’ or ‘log-nor-

mal,’ depending on whether we use Eqs (3) or (4) as the decoding distribution, respectively.

We note that the generative distribution is a member of the exponential family, whose natural

parameters are non-linear functions of the latent variables. This represents a generalization of

the classic Helmoltz machine, that takes into account higher-order sufficient statistics [14, 19].

Recognition model (encoder)

The generative model assumes a prior distribution over neural activity, pψ(r): typically neural

activity changes as a function of external stimuli to encode information about the sensory

world. The recognition model prescribes the way in which stimuli evoke (are mapped to) neu-

ral activity, through a conditional distribution qθ(r|x). In the next section, we relate these two

models by optimizing a loss function which takes both account.

We consider a population of N neurons which responds to a continuous scalar sensory

stimulus, x, distributed according to a prior distribution, π(x) (Fig 1, right). In order to avoid

confusion with the prior distribution over neural activity patterns, pψ(r), defined above, we

will refer to π(x) as the data, or stimulus, distribution. The encoding distribution is the condi-

tional probability distribution over neural activity patterns given the stimulus, qθ(r|x), where θ
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denotes the set of parameters. For the sake of simplicity, we assume that neurons spike inde-

pendently conditional on the stimulus, such that qyðrjxÞ ¼
QN

i¼1
qyðrijxÞ. (We focus on condi-

tionally independent neural activity because modeling correlations would require additional

OðN2Þ parameters and further assumptions about their structure (e.g., related to the connec-

tivity that gives rise to the neural activity). As it has been extensively documented in the litera-

ture, the same coding performance can be achieved with different configurations of signal and

noise correlations [42, 43]. Allowing for noise correlations would complicate the interpretation

of our results.)

We consider a Bernoulli distribution, with the probability of spiking of a neuron obtained

as

qyðri ¼ 1jxÞ ¼
fiðxÞ

1þ fiðxÞ
; ð5Þ

where fi(x) is referred to as the neuron’s tuning curve. (This model can also be viewed as the

limit of a Poisson model for spiking neurons with low rates [44, 45].) We parametrize tuning

curves as Gaussian functions, a shape widely observed in early sensory areas, as

fiðxÞ ¼ Ai exp �
ðx � ciÞ

2

2w2
i

� �

; ð6Þ

with ci the preferred stimulus of neuron i, wi the tuning width, and Ai the amplitude. Thus, the

probability of spiking of a neuron can be written as qyðri ¼ 1jxÞ ¼ SðZiðxÞÞ, with ZiðxÞ ¼
� ðx� ciÞ

2

2w2
i
þ logAi and SðyÞ ¼ 1=ð1þ expð� yÞÞ, the logistic function. (We note the analogy

between this encoder and the classic recognition model of the Helmoltz machine, with the dif-

ference that here we employ a quadratic function of the stimulus as the argument of the sig-

moid, while a linear function is employed in the classic Helmoltz machine.) In the canonical

form of the exponential family, the resulting multivariate Bernoulli distribution can be written

as

qyðrjxÞ ¼ exp ηðxÞTr �
XN

i¼1

log 1þ eZiðxÞ
� �

 !

; ð7Þ

with η(x) = (η1(x), . . ., ηN(x)) the vector of natural parameters and y ¼ fAi; ci;wig
N
i¼1

the set of

parameters of the encoder.

Training objective

We introduced two models of joint distributions of neural activity and sensory stimulus, the

generative model, pψ(x|r)pψ(r), and the recognition model, qθ(r|x)π(x). Optimality requires

that their joint distributions be matched. To approach this condition, we set the parameters of

the generative and recognition model so as to minimize the Kullback-Leibler divergence

between the two joint distributions,

min
c;y

DKLðqyðrjxÞpðxÞjjpcðxjrÞpcðrÞÞ: ð8Þ

This quantity, is an upper bound to the Kullback-Leibler divergence between the true stimulus

distribution and the marginal generative distribution over stimuli: we have

DKLðqyðrjxÞpðxÞjjpcðxjrÞpcðrÞÞ ¼ DKLðpðxÞjjpcðxÞÞ þ hDKLðqyðrjxÞjjpcðrÞÞipðxÞ; ð9Þ
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where the second term on the right-hand side is non-negative by definition of the Kullback-

Leibler divergence. Eq (9) implies that, by optimizing Eq (8), we minimize an upper bound on

the divergence between the true distribution of stimuli and the generative distribution (first

term on the right-hand side, purple and green curves in the top-left panel in Fig 1). Further-

more, this quantity, up to a constant term, is equal to the negative log-likelihood of the

observed data under the generative model, hlog pψ(x)iπ(x), a quantity called ‘evidence’ and

often used as a maximization objective in machine learning frameworks [23, 24] (see Discus-

sion below and Eq (14)).

The quantity in Eq (8) can be rewritten as

DKLðqyðrjxÞpðxÞjjpcðxjrÞpcðrÞÞ ¼ HðpÞ�
DX

r

qyðrjxÞ log pcðxjrÞ

þDKLðqyðrjxÞjjpcðrÞÞ
E

pðxÞ
;

ð10Þ

where we recognize in the last two terms of the right-hand side the opposite of the so-called

‘evidence lower bound’ (ELBO). Thus, by ignoring the stimulus entropy that does not depend

on the parameters, the problem in Eq (8) can be formulated as

min
fc;yg
f� ELBO ¼ Dþ Rg: ð11Þ

Borrowing the nomenclature from rate-distortion theory, we call distortion the quantity

D ¼

*

�
X

r

qyðrjxÞ log pcðxjrÞ

+

pðxÞ

; ð12Þ

equal to the second term on the right-hand-side of Eq (10), and rate the quantity

R ¼ hDKLðqyðrjxÞjjpcðrÞÞipðxÞ ¼

*
X

r

qyðrjxÞ log
qyðrjxÞ
pcðrÞ

 !+

pðxÞ

; ð13Þ

equal to the third term. This framework goes by the name of variational autoencoder (VAE)

[23, 24]. The encoder maps a stimulus sample, x, to a neural activity pattern, r, according to

qθ(r|x). The activity pattern corresponds to a realization of the latent variable in the generative

model, and is mapped back (‘decoded’) to a distribution over stimuli according to pψ(x|r). As

one typically does not have access to the true data distribution, but only to a set of samples, the

average over π(x) is approximated by an empirical average over a set of Ntrn samples,

hf ðxÞipðxÞ �
PNtrn

i¼1
f ðxiÞ=Ntrn.

In machine learning, the derivation of the VAE is often presented from a different starting

point. The generative model parameters are required to maximize the evidence, i.e., the log-

likelihood of data samples under the generative process, hlog pψ(x)iπ(x), which is equivalent, up

to a constant term corresponding the data entropy, to the first term on the right-hand side of

Eq (9),

hlog pcðxÞipðxÞ ¼ � HðpÞ � DKLðpðxÞjjpcðxÞÞ: ð14Þ

This, however, requires the inversion of the generative model, to obtain pψ(r|x), a typically

intractable task. A common approach is to introduce a variational approximation of this poste-

rior distribution, qθ(r|x), and, by combining the identities in Eqs (14), (10) and (9), to maxi-

mize the quantity −(D + R) which constitutes a (variational) lower bound to the evidence. Yet

an alternative derivation is obtained by applying Jensen’s inequality to the evidence rewritten

PLOS COMPUTATIONAL BIOLOGY Jointly efficient encoding and decoding in neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012240 July 10, 2024 7 / 32

https://doi.org/10.1371/journal.pcbi.1012240


in such a way to feature the variational approximation, hlog pψ(x)iπ(x) = hlog
R
drqθ(r|x)pψ(x,

r)/qθ(r|x)iπ(x) [23–25].

Mean-squared error

We note that, due to the fact that the variance of the generative distribution depends on the

neural responses, the distortion differs from the more usual mean-squared error (MSE) loss

function of classical autoencoders, also commonly employed to measure the performance of

neural codes. Indeed, in the case of a Gaussian decoder, the distortion function is written as

D ¼

*
X

r

qyðrjxÞ
ðm�ðrÞ � xÞ2

2s2
�ðrÞ

þ
1

2
exp 2ps2

�
ðrÞ

� �
 !+

pðxÞ

; ð15Þ

while the MSE, if we assume that the brain has access to the full (approximation) of the poste-

rior distribution over stimuli, pψ(x|r), is obtained as

ε2 ¼

*
X

r

qyðrjxÞðm�ðrÞ � xÞ2
+

pðxÞ

; ð16Þ

where we have used the maximum a posteriori (MAP) estimate, x̂MAP ¼ m�ðrÞ. In the case of a

log-normal decoder, the distortion is obtained as

D ¼

*
X

r

pðrjxÞ
ðm�ðrÞ � log xÞ2

2s2
�ðrÞ

þ
1

2
log 2pxs2

�
ðrÞ

� �
 !+

pðxÞ

; ð17Þ

where the MAP estimate is given by x̂MAP ¼ exp ðm�ðrÞ � 2s2
�
ðrÞÞ. (Note that we quote instead

the square root of the MSE (RMSE) in comparing the predictions of our model to the data on

acoustic frequency-difference limens, in the section “Case study: neural encoding of acoustic

frequencies.”).

If we assume that the brain makes use of the same generative model to produce behavioral

responses (i.e., does not have access to an auxiliary (ideal) decoder), a straightforward opera-

tion is to draw samples, rather than computing statistics such as the mode. Thus, in the Results

section, we also consider the MSE obtained when the stimulus estimate, x̂, is sampled from the

posterior distribution, x̂ � pcðxjrÞ, as

ε2
sampling ¼

*
X

r

qyðrjxÞ
Z

dx̂pcðx̂jrÞðx̂ � xÞ2
+

pðxÞ

¼

*
X

r

qyðrjxÞ ðm�ðrÞ � xÞ2 þ s2

�
ðrÞ

h i
+

pðxÞ

:

ð18Þ

We note that since our decoder is non-ideal and might be biased, the Fisher information of

the encoder distribution, often used to quantify the encoding properties of neural populations

as it provides a lower bound to the variance of any unbiased estimator [31], here yields a poor

prediction of the coding performance. In S6 Fig, we compare the MSE with the inverse of the

Fisher information, which in the case of independent Bernoulli neurons can be obtained as

PLOS COMPUTATIONAL BIOLOGY Jointly efficient encoding and decoding in neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012240 July 10, 2024 8 / 32

https://doi.org/10.1371/journal.pcbi.1012240


[10]

JðxÞ ¼
XN

j¼1

ðx � cjÞ
2

s4
j

1

ð1þ expð� ZjðxÞÞÞ
2
; ð19Þ

with ηj(x) defined as in Eq (7).

Constrained optimization and connection with efficient coding

It is a known issue in the VAE literature that, when the generative distribution is flexible given

the data distribution (meaning that pψ(x|r) has enough degrees of freedom to approximate π
(x)), the ELBO optimization problem exhibits multiple solutions. Optimization algorithms

based on stochastic gradient descent are biased towards solutions with low rate and high dis-

tortion, a phenomenon which goes by the name of posterior collapse [28, 46]. In the extreme

case, the model relies entirely on the power of the decoder and ignores the latent variables alto-

gether: all realizations of the latent variables are mapped to the data distribution, pψ(x|r)� π
(x), and, consequently, all stimuli are mapped to the same representation, qθ(r|x)� pψ(r).

We overcome this issue by addressing a related, constrained optimization problem. We

minimize the distortion subject to a maximum, or ‘target,’ value of the rate, �R:

min
fy;cg

D

subject to R � �R:
ð20Þ

The set of parameters {θ, ψ} that satisfy the constraint R � �R is called feasible set. By writing

the associated Lagrangian function with multiplier β� 0, we have that

max
b�0
fLðy;c; bÞ ¼ Dþ bðR � �RÞg ¼

D if fy;cg is feasible

1 otherwise
:

(

ð21Þ

Solutions of Eq (20) can thus be found as solutions to the ‘minimax’ problem,

min
fy;cg

max
b�0
fLðy;c; bÞ ¼ Dþ bðR � �RÞg: ð22Þ

The Lagrangian has a form similar to that of the negative ELBO, with an additional β factor

multiplying the rate; this framework was presented as an extension of the classical VAE, with

the aim of obtaining disentangled latent representations, in Refs. [28, 47].

Before addressing the optimization problem, we note that the two terms contributing to the

ELBO are related to the mutual information of stimuli and neural responses of the encoder,

Iencðr; xÞ ¼ log
qyðr; xÞ
pðxÞqyðrÞ

� �

qyðr;xÞ

; ð23Þ

through the bounds

HðpÞ � D � Iencðr; xÞ � R; ð24Þ

where H(π) is the entropy of the stimulus distribution [28]. The two inequalities arise because

in the variational approximation the posterior over stimuli, pψ(x|r), replaces qθ(x|r), and the

prior over activity patterns, pψ(r), replaces qθ(r), respectively. Since we are considering contin-

uous stimuli, H is a differential entropy, and is thus defined up to a constant, and D can take

negative values. Below, we will illustrate the properties of the generative model also through
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the DKL divergence between the stimulus and the marginal generative distribution, i.e., the

first term on the right-hand side of Eq (9), which is non-negative.

Eq (24) has two important consequences. First, it allows us to interpret the problem in Eq

(20) as an efficient coding problem, where the objective is to maximize a lower bound to the

mutual information, H − D, subject to a bound on the neural resources, �R. Contrary to the

classical efficient coding literature, in which a metabolic constraint is imposed by hand, here it

results from the original formulation of the problem as optimization of the ELBO, and it is

affected by the assumptions made on the generative model (more specifically, on the prior dis-

tribution). The rate is minimized when the stimulus has little impact on the distribution of

neural responses. A metabolic constraint is similarly bound to disfavor large changes in neural

activity induced by stimuli. For this reason, the rate can interpreted as an abstract form of met-

abolic constraint.

Second, it prescribes limiting values to the solutions of Eq (20). If the variational distribu-

tions, pψ(r) and pψ(x|r), are flexible enough to approximate qθ(r) and qθ(x|r), we can achieve

both inequalities, and we have D ¼ H � �R. Along this line in the rate-distortion plane, the

negative ELBO achieves its minimum value, equal to the stimulus entropy. In what follows, we

call ‘optimal’ the solutions of Eq (20) and ‘lowest limiting values’ the values on the line of ideal

solutions, D ¼ H � �R.

We address the minimax problem of Eq (22) numerically through a two-timescales, alter-

nated stochastic gradient descent-ascent, Alg. 1. We denote by {θ*, ψ*, β*} the optimal parame-

ters. It is possible to show under some assumptions that (i) the parameter set {θ*, ψ*} is a

solution of the problem defined in Eq (20); (ii) if β*> 0, the constraint on the rate is satisfied

as an equality, R ¼ �R, and β* is the negative slope of the curve of minimum distortion as a

function of the target rate, dDd�R jy∗;c∗ ¼ � b
∗
; (iii) if β* = 1, then the parameters {θ*, ψ*} maximize

the ELBO. We report the conditions under which these statements are true, and their proofs,

in the section S1 Appendix.

Algorithm 1 Two-timescale optimization algorithm.
1: Inputs: target rate �R; dataset D
2: Initialize: β = 1, encoder/decoder parameters= {θi, ψi}
3: while convergence do
4: Define β-ELBO: Lβ = D + βR
5: for batch in D do
6: Update parameters: (θ, ψ)  Adam (rθLβ(batch), rψLβ(batch))
7: end for
8: b! maxfbþ ZbðR � �RÞ; 0g
9: end while
10: return

Numerical optimization and related computations

Numerical simulations are carried out using PyTorch. We solve the optimization problem in

Eq (22) through stochastic gradient descent on the loss on a training dataset with Ntrn samples

from π(x). Except for the results shown in the section “Generalization and role of the rate as

regularizer”, we used Ntrn = 2000, divided in minibatches of size 128, with the Adam optimizer

[48] with learning rate equal to 10−4 and otherwise standard hyperparameters. The learning

rate for β, ηβ, is set to 0.1. The training is iterated over multiple passes over the data (epochs)

with a maximum of 5000 epochs and it is stopped when the training loss running average

remains unchanged (with a tolerance of 10−5) for 100 consecutive epochs. The properties of

the model are then quantified and illustrated using another dataset of Ntst = 2000 samples from

π(x). Except for the results shown in in the section “Generalization and role of the rate as

PLOS COMPUTATIONAL BIOLOGY Jointly efficient encoding and decoding in neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012240 July 10, 2024 10 / 32

https://doi.org/10.1371/journal.pcbi.1012240


regularizer”, due to the volume of the training set, the metrics (e.g., distortion, rate, MSE)

recorded using the training and the test set are indistinguishable, and we refer to them without

making the distinction explicit. In the section “Generalization and role of the rate as regulari-

zer” we explore the issue of generalization, and we use different values of Ntrn; we adapt the

size of the minibatch to keep it approximately in proportion to the training set size. Here, the

metrics recorded on the test set deviate from those obtained from the training set, and we dif-

ferentiate them by using the ‘trn’ and ‘tst’ suffixes.

The parameters are initialized as follows. The preferred positions, ci, are initialized as the

centroids obtained by applying a k-means clustering algorithm (with k = N) to the set of sti-

muli in the dataset. Tuning widths are initialized by setting wi = |ci − cj|, with cj the closest pre-

ferred position to ci, and the amplitude is set equal to 1, corresponding to a maximum

probability of spiking of 0.5. Random noise of small variance is applied to the initial value of

the parameters. The biases of the prior, h, are set equal to 1. The coupling matrix, J, is sampled

from a Wishart distribution with n = p = N degrees of freedom, with variance equal to 1/N and

diagonal elements set to 0. The weights of the decoder neural network are initialized with the

standard Kaiming initialization, corresponding to a uniform distribution between a and −a,

with a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
6=nl� 1

p
, and nl−1 the size of the input layer; the biases are set to 0. The results are

averaged over 16 network initializations. An example of the evolution of D, R, and β during

training is illustrated in Fig 2.

We illustrate results for N small enough so that it be possible to compute explicitly the sums

over activity patterns appearing in the loss function. This also allows us to explore regimes in

which the information is compressed in the activity of a finite population of neurons. In S2

Appendix, we discuss the numerical issues encountered when the population size is large, and

we mention possible solutions.

For the results shown in the sections “Optimal allocation of neural resources and coding

performance” and “Case study: neural encoding of acoustic frequencies”, we use the function

curve_fit from the scipy package to fit the MSE, the neural density, and the tuning

width as functions of the stimulus probability with power laws. Concretely, we log-transform

the data, and we fit a linear model, log f(x) = A − γ log π(x), with A and γ as parameters. The

MSE as a function of x is obtained by averaging across 16 initializations of the model parame-

ters. We computed the neural density by applying a Kernel density estimate to the centers of

the tuning curves. In order to match the scale of the predicted error, ε(f), to the scale of the

Fig 2. Example of training. pðxÞ ¼ LN ð1; 1Þ, N = 12, �R ¼ 1:32 (A) Evolution of negative ELBO, and the two terms, D and R, with training epochs. Plot in

log-log scale. (B) Joint evolution of R and D in the rate-distortion plane, colored according to the epoch (increasing from blue to yellow, colors in

logarithmic scale). (C) Evolution of β during training.

https://doi.org/10.1371/journal.pcbi.1012240.g002
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experimental data on frequency-difference limens, y(f), we found the parameter a which mini-

mized the squared distance between the logarithm of the data and the logarithm of the mean

error, across all data points, â ¼ arg mina
P

f ðlog yðf Þ � logðεðf Þ=aÞÞ2.

Results

We optimize jointly an encoder, a population of neurons with simple tuning curves, which sto-

chastically maps stimuli to neural activity patterns, and a decoder, a neural network which

maps activity patterns, interpreted as latent variables, to distributions over stimuli. The system

is set so as to minimize a bound to the Kullback-Leibler (DKL) divergence between the genera-

tive distribution and the true distribution of stimuli (Fig 1). By formulating the training objec-

tive as a constrained optimization problem, we characterize the space of optimal solutions as a

function of the value of the constraint; we then discuss the properties of the encoder and of the

decoder in the family of solutions. This constrained optimization problem takes a form similar

to that of the efficient coding problem:

min
fy;cg

D

subject to R � �R:
ð25Þ

Here the minimization of the distortion, D, is the analog to the maximisation of the mutual

information between stimuli and neural responses in efficient coding. The constraint on the

rate, R, corresponds to a metabolic constraint in efficient coding, and quantifies the impact of

a stimulus on the neural response (see Materials and methods). We mainly focus on the solu-

tions of the asymptotic problem with large training set. In the section “Generalization and the

role of the rate as regularizer,” we address the implications of a finite training set.

Degeneracy of optimal solutions

We begin by illustrating two alternative solutions of the ELBO optimization problem, Eq (11),

characterized by different contributions of the two terms, D and R. We first consider the sim-

ple, but instructive, case of a Gaussian distribution over stimuli, pðxÞ ¼ N ðmp; s2
pÞ, together

with a Gaussian decoder. In order to minimize the rate, a possible solution is to set the parame-

ters of the encoder so as to map all stimuli to the same distribution over neural activity patterns

which in turn approximates the prior distribution, qθ(r|x)� pψ(r). This is achieved by neurons

with low selectivity, i.e., with broad and overlapping tuning curves (Fig 3A, top). Despite the

uninformative neural representation, a perfectly accurate generative model is obtained (in this

special, Gaussian case) by mapping all activity patterns to the parameters of the data distribu-

tion, μψ(r) = μp and s2
c
ðrÞ ¼ s2

p for all r; in this way, the generative distribution becomes inde-

pendent from the neural activity, pψ(x|r)� π(x) (Fig 3B, top). The rate term becomes

negligible and the distortion equal to the stimulus entropy, thereby satisfying the leftward

inequality in Eq (24). The sum of the two terms is equal to the stimulus entropy, the lower

bound of the negative ELBO; the neural representation, however, retains no information

about the stimulus.

At the opposite extreme, it is possible to minimize the distortion by learning an injective

encoding map that associates distinct stimuli to distinct activity patterns. In our framework,

this is achieved by narrow and non-overlapping tuning curves that tile the stimulus space (Fig

3A, bottom). For a given encoding distribution, the optimal prior distribution which
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minimizes the rate, Eq (13), is equal to the marginal encoding distribution,

qc∗ðrÞ ¼ hqyðrjxÞipðxÞ: ð26Þ

(See Ref. [49] for an application of this optimal prior in the context of VAEs.) If the encoding

distribution is different for each stimulus, the rate term does not vanish, but, numerically, we

find that the parameters of the prior can still be set so as to approximate Eq (26), achieving the

rightward inequality in Eq (24). Furthermore, the decoder then maps each activity pattern to a

narrow Gaussian distribution over stimuli, so as to suppress the distortion to negligible values.

As a consequence, the negative ELBO again achieves its lower bound, and it is possible to

obtain a generative model that approximates closely the stimulus distribution, though less

smoothly (Fig 3B, bottom).

Although these two solutions yield comparable values of the ELBO (Fig 3C) and equally

accurate generative models, the corresponding neural representations are utterly different.

This case is special and contrived, because the conditional generative distribution has the same

functional form as the stimulus distribution, and thus a perfect generative model is obtained

even when it ignores the latent variables. However, the reasoning extends to more complex

cases, and the choice of the forms of the decoding distribution and the prior determines the

ability of the system to optimize the ELBO in different ways [28]. In order to achieve a small

distortion at low rates, the generative distribution must be flexible enough to approximate the

data distribution even when the latent variables carry little information about the stimulus.

Fig 3. Qualitatively different optimal configurations. In all simulations, N = 10 and pðxÞ ¼ N ð0; 5Þ. Top row: high-distortion, low-rate solution. Bottom

row: low-distortion, high-rate solution. (A) Bell-shaped tuning curves of the encoder (probability of neuron i to emit a spike, as a function of x). (B)

Comparison between the stimulus distribution, π(x) (green curve), and the generative distribution, pψ(x) = ∑r pψ(x|r)pψ(r) (purple curve). (C) Numerical

values of the ELBO, and the distortion and rate terms.

https://doi.org/10.1371/journal.pcbi.1012240.g003

PLOS COMPUTATIONAL BIOLOGY Jointly efficient encoding and decoding in neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012240 July 10, 2024 13 / 32

https://doi.org/10.1371/journal.pcbi.1012240.g003
https://doi.org/10.1371/journal.pcbi.1012240


Conversely, prior distributions which can fit marginal encoding distributions in which each

data point is mapped precisely to a realization of the latent variables, achieve a low value of the

rate for small distortion. Indeed, as we show next, we observe the existence of multiple solu-

tions of the ELBO optimization problem for more complex stimulus distributions.

Analysis of the family of optimal solutions

We explore systematically the space of solutions which optimize the ELBO, by minimizing the

distortion subject to a constraint on the maximum (‘target’) value of the rate, �R, a formulation

which yields a generalized objective function (Eq (22)) with a factor β that weighs the rate term

(see Materials and methods). The value of �R is an upper bound to the mutual information

between stimulus and neural response; it thereby imposes a degree of ‘compression’ of the

information in the encoding process. We illustrate results for the simple, yet non-trivial, choice

of a log-normal stimulus distribution and Gaussian decoder, which exhibits a similar degener-

acy as the simple case described above, in spite of the discrepancy between the stimulus and

generative distributions (S1 Fig). Furthermore, the degree of degeneracy of solutions is compa-

rable to the case in which a log-normal decoder is used instead of Gaussian one (S2 Fig). Simi-

lar observations hold for other distributions as well: in S4 Fig we illustrate the case of a

multimodal distribution.

Each solution is associated with a point ð�R;DÞ in the rate-distortion plane. By varying the

value of �R, we trace the curve of the optimal distortion as a function of the target rate (Fig 4A).

We focus on the range of values of �R resulting in β* = 1, for which R ¼ �R and the correspond-

ing solutions also yield an optimal value of the ELBO (shaded grey area). These solutions fall

on the line of lowest limiting values D = H(π) − R, with H(π) the stimulus entropy, such that

both inequalities in Eq (24) are achieved; as a result, the mutual information is equal to �R (Fig

4A, inset). Deviations from this line appear for extreme values of the target rate. On the one

hand, as the stimulus and the generative distributions do not belong to the same parametric

family, it is not possible to achieve the limiting value of the distortion with �R ¼ 0 (this can be

achieve by using a log-normal decoder, S2 Fig). On the other hand, for sufficiently large �R, the

distortion stops decreasing and saturates; this occurs when the tuning curves are as narrow as

possible while still tiling the stimulus space (Fig 4B, bottom). The distortion can be further

decreased by increasing the number of available activity patterns, which depends on the popu-

lation size (Fig 5A). By increasing the number of neurons, we also increase the number of tun-

ing-curve arrangements which correspond to an optimal model, i.e., the number of degenerate

solutions. This degeneracy is stronger at lower values of the rate, implying that the lowest lim-

iting value of distortion can be achieved even with small population sizes. This is because, once

the critical size needed to achieve the lowest limiting value of the distortion is reached, adding

neurons does not raise the informational content of the population activity. When the rate is

large, instead, the lowest limiting value can be achieved only in large enough populations.

The quality of the generative model is quantified by the DKL divergence between the genera-

tive distribution, pψ(x), and the stimulus distribution, π(x); it is negligible for all values of �R in

the region of interest (Fig 4B). (We recall that the ELBO, up to a constant, is a lower bound to

this quantity, and the gap is the DKL divergence between the true and the approximate poste-

rior distribution over neural activity, Eqs (9) and (10).) The U-shape is due to the jaggedness

of the generative model at high values of �R (see next section), which is attenuated as the popu-

lation sizes increases (Fig 5B).

Different values of �R also result in different encoders, corresponding to different arrange-

ments of the tuning curves (Fig 4C). For small values of �R, tuning curves are broad and the

spacing between preferred positions is small, causing large overlaps: different stimuli are
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mapped to similar distributions over neural activity patterns. Moreover, they are characterized

by low amplitudes and, thus, higher stochasticity; indeed, stochastic neurons yield compressed

representations [50]. Increasing �R causes noise to be suppressed through an increase in the

amplitude, and narrower and more distributed tuning curves.

The solutions also differ in the structure of the prior over neural activity, pψ(r) (Fig 4D,

insets). In the regime in which the decoder ignores the latent variables, i.e., pψ(x|r)� pψ(x), the

prior, pψ(r), is unstructured, and the couplings, J, are weak. By contrast, when �R is large, the

structure of the stimulus distribution affects the coupling matrix in the prior, inducing cou-

pling strengths that depend on the distances between the neurons’ preferred positions. (The

capacity of the model to reach the lowest limiting value of the distortion for a large range of

target rates is precisely due to the prior being very flexible and able to capture correlations

Fig 4. Characterization of the optimal solutions as functions of the target rate. In all simulations, N = 12, pðxÞ ¼ LN ð1; 1Þ. Solid curves illustrate the

mean across different initializations and shaded regions correspond to one standard deviation. (A) Solutions of the ELBO optimization problem as a

function of target rate, Dð�RÞ (blue curve), and theoretical optimum, D ¼ HðpÞ � �R (black curve), in the rate-distortion plane. Values of �R where the

solutions coincide with the theoretical optimum (grey region). Solutions depart from the optimal line when the rate is very low (poor generative model) or

very high (saturated distortion). Inset: mutual information between stimuli and neural responses as a function of �R. (B) Kullback-Leibler divergence

between the stimulus and the generative distributions, as a function of �R. (C) Optimal tuning curves for different values of �R. Each dot represents a neuron:

the position on the y-axis corresponds to its preferred stimulus, the size of the dot is proportional to the tuning width, and the color refers to the amplitude

(see legend). Tuning curve parameters are averaged across 16 initializations, ordering the neurons as a function of their preferred position. The curve on

the right illustrates the data distribution, π(x). (D) Entropy of the prior distribution over neural activity, pψ(r), as a function of �R. Insets show two

configurations of the coupling matrices, with rows ordered according to the neurons’ preferred stimuli, and coupling strengths colored according to the

legend. (E) MSE in the stimulus estimate, obtained as the MAP (blue curve, scale on the left y-axis), or from samples (orange curve, scale on the right y-

axis), as a function of �R. Inset: MSE (MAP) as a function of the average tuning width.

https://doi.org/10.1371/journal.pcbi.1012240.g004
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between neural activity. The flexibility of the model is reduced when the couplings in the prior

are set to 0 (S3 Fig).) As the coupling strengths increase, the entropy of the prior distribution

decreases (Fig 4D).

Finally, we characterize the decoding properties in terms of a quantity commonly used in

perceptual experiments and theoretical analyses: the mean-squared error (MSE) in the stimu-

lus estimate. We approximate the maximum a posteriori (MAP) estimate as the mode of the

decoding distribution (see Materials and methods). In the absence of an auxiliary, ideal estima-

tor, the brain can produce estimate by sampling from the decoder; we thus also consider the

MSE in the limiting case in which the stimulus estimate is evaluated as a single sample from

the posterior distribution, x̂sampling � pcðxjrÞ. In Materials and methods, we compute the two

corresponding functional forms, (see Eqs (16)–(18)), which differ by a term equal to the poste-

rior variance in the case of Gaussian decoder. We note that our decoder is not ideal, especially

at low rates, and might be biased; it does not saturate the Cramer-Rao bound. As a conse-

quence, as in the cases of extremely noisy neurons and complex encoding schemes [51–53],

the Fisher information of the encoding distribution yields a poor estimate of the decoding

accuracy (see Materials and methods, S6 Fig).

As expected from the behavior of the mutual information between stimuli and neural

responses, the decoding performance of the system increases as a function of �R, with a similar

qualitative behavior of the error in the two estimation schemes (Fig 4E). But it is worth exam-

ining the behavior quantitatively. In both schemes, the MSE does not decrease linearly with �R,

but rather exhibits a rapid decrease followed by a slower one; the quantitative value at high

rates depends on the population size (Fig 5C). In particular, the system achieves comparable

decoding performances for a broad range of values of the tuning width (Fig 4E, inset).

Generalization and the role of the rate as regularizer

The result illustrated in Fig 4B implies that intermediate representations are preferred to repre-

sentations with extremely narrow tuning curves, in that they yield a smoother approximation

of the stimulus distribution. This observation suggests that, in the case of a limited volume of

data, the rate might serve as regularizer which prevents the model from overfitting the data.

Fig 5. Dependence of the results on the population size. Solid curves illustrate the mean across different initializations and shaded regions correspond to

one standard deviation. Same simulations as in Fig 4, with different values of the population size. (A) Optimal solutions (blue curves), Dð�RÞ, for different

population sizes, N, (legend in panel B) and theoretical bound (black curve), D ¼ HðpÞ � �R, in the rate-distortion plane. (B) Kullback-Leibler divergence

between the stimulus and the generative distributions, as a function of �R. (C) MSE in the stimulus estimate, obtained as the MAP, as a function of �R.

https://doi.org/10.1371/journal.pcbi.1012240.g005
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We thus expect that limiting the rate benefits generalization properties, i.e., suppresses errors

due to the stochasticity of the training dataset.

We test this hypothesis by training the model on a limited volume of data, and comparing

the resulting performance to the asymptotic limit of a large training set explored in the previ-

ous section (Fig 6). We find that, at intermediate values of target rate (grey region in Fig 4), the

distortion in the training set is always smaller than the distortion in the asymptotic limit, and

the more so the smaller the training set, suggesting that the model overfits (Fig 6A, top). Mor-

eoever, this trend is enhanced for larger values of the rate. This is further confirmed by an anal-

ysis of the distortion in a test set (a large number of stimulus samples), which is larger than in

the asymptotic limit, yielding a ‘generalization gap’ that depends on the value of the target rate

Fig 6. Characterization of optimal solutions as functions of training set size. In all simulations, N = 12, and pðxÞ ¼ LN ð1; 1Þ. Solid curves represent the

mean across different initializations, and shaded regions correspond to one standard deviation. The legend in panel A serves as a legend for all panels. (A)

Solutions of the ELBO optimization problem as functions of the target rate, for the training set (top) and for the test set (bottom). Top: distortion, Dtrnð
�RÞ,

and rate, Rtrnð
�RÞ (inset), for the training set as a function of the target rate, for different sizes of the training set, colored according to the legend. For smaller

training sets, at higher rates the model tends to overfit the data, resulting in a lower training distortion than optimal (red line, large training set, same data

as in Fig 4). Bottom: distortion, Dtstð
�RÞ, and rate, Rtstð

�RÞ (inset), for the test set as functions of the target rate, for different sizes of the training set. For

smaller training sets, at higher rates the model does not generalize to unseen samples, resulting in a large distortion. (B) Left: Kullback-Leibler divergence

between the stimulus and the generative distributions, as a function of �R, for different sizes of the training set. At higher rates, the generative model fits

poorly the stimulus distribution. Right: examples of comparisons between stimulus (green line) and generative distribution (red and orange line) at low

(top) and high (bottom) rates, for different sizes of the training set, Ntrn = 100 and Ntrn = 2000, colored according to the legend as in panel A. (C) Tuning

width, wi, as a function of the location of a preferred stimulus, ci (dots), at low (left) and high (right) rates, for different sizes of the training set, Ntrn = 100

and Ntrn = 1000. The grey curve represents the stimulus distribution, π(x). (D) MSE in the stimulus estimate, obtained as the MAP, as a function of �R, for

different sizes of the training set.

https://doi.org/10.1371/journal.pcbi.1012240.g006
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(Fig 6A, bottom). The rate, instead, exhibits no difference between the training and the test set

(Fig 6A, insets).

The generalization gap results in a poorer fit of the stimulus distribution by the generative

model (Fig 6B). When the number of training samples is small, at high rates the location of the

peaks in the generative distribution (see also Fig 3B, bottom) strongly depend on the stimuli

present in the training set; this leads to a poor approximation of the stimulus distribution (Fig

6B, bottom). Low rates, instead, induce a smoother generative distribution. They also reduce

the dependence of the quality of fit on the training set size, and enhance generalization (Fig

6B, left). Thus, the target rate effectively acts as regularizer, that prevents overfitting and favors

generalization. A limitation in the volume of training data also affects the encoder and decoder

properties: tuning curves become narrower at higher rates (Fig 6C), and the MSE in the stimu-

lus estimate is much more sensitive to the volume of the training set at high rates (Fig 6D). We

verify the consistency of these observations across other stimulus distributions by examining

the case of a multimodal distribution (S5 Fig). Jointly, the results illustrated in Figs 4 and 6

point to the benefit of intermediate values of the rate that regularize the model. In this regime,

the encoder is characterized by broad tuning curves, and the decoder achieves low coding

error and generalizes to unseen data (Figs 4E and 6D).

Optimal allocation of neural resources and coding performance

The classical efficient coding hypothesis prescribes an allocation of neural resources as a func-

tion of the stimulus distribution: more frequent stimuli are represented with higher precision.

This has been proposed as an explanation of a number of measurements of perceptual accu-

racy and behavioral bias [10, 54, 55]. We investigate, in our model, the relations between stim-

ulus distribution, the use of neural resources (tuning curves), and the coding performance,

and how each these vary with �R. We emphasize that the functional form of the stimulus distri-

bution affects these relations, through its interplay with the functional form not only of the

encoder (as in the classical efficient coding framework), but also of the generative distribution.

In order to make statements about the typical behavior of the system, we average our results

over different random initializations of the parameters; single solutions might deviate from the

average behavior due to the small number of neurons and the high dimensionality of the

parameter space. We illustrate results for the non-trivial case of a log-normal distribution of

stimuli and a Gaussian decoder; in S7 and S8 Figs, we report results obtained when the stimu-

lus and decoding distributions belong to the same parametric family (Gaussian and log-nor-

mal, respectively). Our conclusions can be compared with results from previous studies. In

particular, we invoke the analytical results derived in Ref. [10] for a similar population coding

model; in Sec. S3 Appendix, we provide an alternative derivation of these results and we com-

ment on the main differences with our model. Here, we note that our results are obtained by

considering a regime of strong compression of the information (small population sizes), while

previous studies focused on the asymptotic regime with N!1.

As illustrated in Fig 4C, the target rate affects the neural density, i.e., the number of neurons

with preferred stimuli within a given stimulus window. In previous work, maximizing the

mutual information required that the neural density be proportional to the stimulus density, d
(x)/ π(x) [10, 31, 56]. In our case, the range of possible behaviors is richer, especially when

the stimulus distribution is non-trivial (i.e., it does not have the same functional form as that

of the generative distribution). At low rates, the location of maximum density might be differ-

ent from the mode of the stimulus distribution, depending on the interplay between the gener-

ative and the stimulus distributions (Fig 7A, S7(A) and S8(A) Figs). The neural density

becomes more sensitive to the stimulus distribution for large values of �R: a power law
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functional form, dðxÞ ¼ AdpðxÞ
gd , yields a good agreement with our numerical results, with an

exponent, γd, close to 1/2 (Fig 7A).

In Ref. [10, 57], analytical results were obtained by constraining the neural density and the

tuning width relative to each other. This is equivalent to fixing the overlap between tuning

curves, by imposing w(x)/ d−1(x)/ π(x)−1 (see Sec. S3 Appendix). In our case, the tuning

width and neural density vary independently of each other, and the distribution of widths

exhibits an intricate behavior at small values of �R (Fig 7B, S7(B) and S8(B) Figs). At large values

of �R, the tuning width decreases for large values of the stimulus distribution, and its behavior

is well described by a power law, wi ¼ Aw=pðciÞ
gw . As a result, as �R increases, the inverse corre-

lation between the neural density and the tuning width becomes sharper (Fig 7C and S7(C)

Fig).

A consequence of the heterogeneous allocation of neural resources is a non-uniform coding

performance across stimuli. Fig 8A shows that the MSE exhibits an inverse relation as a func-

tion of the stimulus distribution, with more frequent stimuli encoded more precisely. This is

broadly consistent with previous studies [10, 58], which maximized the mutual information to

obtain the expression

ε2ðxÞ /
1

p2ðxÞ
: ð27Þ

(Similar power-law behaviors, with different exponents, arise from different loss functions [10,

12, 59, 60].) Concretely, these power-law expressions were derived using the Fisher informa-

tion, whose inverse is a lower bound to the variance of an unbiased estimator, and which can

be related to the mutual information in some limits. Here, for all values of �R, the error is well

described by a power law, ε2ðxÞ ¼ Ae=pðxÞ
ge , where the exponent changes as a function of �R,

and depends on the choice of the decoder (Fig 8A, S7(D) and S8(D) Figs). In particular, we

find that when the decoder and the generative distributions belong to the same parametric

family, the dependence of the error on the stimulus distribution is stronger, characterized by

larger values of γe. Finally, we illustrate how the configuration of the tuning curves affects the

Fig 7. Optimal allocation of neural resources. In all simulations, N = 12 and pðxÞ ¼ LN ð1; 1Þ. Results are illustrated for regions of the stimulus space

where the coding performance is sufficiently high, defined as the region where the MSE is lower than the variance of the stimulus distribution. Below, we

mention exponents of the power law fit when the variance explained is larger then a threshold, R2� 0.7. (A) Neural density as a function x (dashed curves)

and power-law fits (solid curves, R2 = (0.21, 0.83, 0.95), γd = (−, 0.43, 0.62)), for three values of �R (low, intermediate, and high); the grey curve illustrates the

stimulus distribution. The density is computed by applying kernel density estimation to the set of the preferred positions of the neurons. (B) Tuning width,

wi, as a function of preferred stimuli, ci (dots), and power-law fits (solid curves, R2 = (0.78, 0.42, 0.82), γw = (1.15, −, 0.7)) for three values of �R; the grey

curve illustrates the stimulus distribution. (C) Tuning width, wi, as a function of the neural density, d(ci), for three values of �R; Pearson correlation

coefficient ρ = (−0.74, −0.66, −0.79).

https://doi.org/10.1371/journal.pcbi.1012240.g007
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coding performance, by plotting the MSE as a function of the neural density and tuning width.

We observe a correlation between high coding performance and regions of high neural density

and narrow tuning widths (Fig 8B and 8C, S7(E), S7(F), S8(E) and S8(F) Figs).

To summarize, given our choice of the loss function, which constrains the encoding stage

as a function of the decoding stage, we obtain a family of optimal neural representations. In

weakly constrained systems (large values of �R), we qualitatively recover previously derived

relationships between tuning curves, stimulus distribution, and coding performance. (The dif-

ference in the numerical values of the exponents in the power laws can be explained by the dif-

ferences between the models (see Sec. S3 Appendix), and depends on the similarity between

the functional forms of the generative and the stimulus distributions. We note that, in previous

work [10, 12, 59] the numerical value of the exponents also change as a function of the form of

the loss function.) In systems with stringent information compression (small values of �R), the

optimal resource allocation exhibits a more intricate behavior that depends on the functional

form of the stimulus distribution and the properties of the generative model.

Case study: Neural encoding of acoustic frequencies

We validate our theory on existing data by considering the empirical distribution of acoustic

frequencies in the environment and relating it to behavioral performance. This distribution

was obtained in Ref. [57] by fitting the power spectrum of recordings data, S(f), with a power-

law,

Sð f Þ ¼
A

f p0 þ f p
; ð28Þ

with A = 2.4 × 106, f0 = 1.52 × 103 and p = 2.61 (Fig 9A, inset). Since the stimulus distribution

exhibits a heavy-tail, we test our model with both a Gaussian and a log-normal decoder.

Despite exhibiting similar degeneracy in the space of solutions (Fig 4 and S2 Fig), the two

decoders yield different quantitative predictions on the optimal allocation of neural resources

(Figs 7 and 8, and S8 Fig).

We observe that a broad range of values of �R results in comparable values of the ELBO and

comparable generative model performances (Fig 9A and 9D). A log-normal decoder yields a

better fit of the stimulus distribution as it is better suited than a Gaussian to capture the heavy

Fig 8. Optimal allocation of coding performance. Same numerical simulations as in Fig 4. (A) MSE (MAP estimate) as a function of x (dashed curves), and

power-law fits (solid curves, R2 = (0.98, 0.98, 0.76), γe = (0.87, 0.74, 0.59)), for three values of �R. (B),(C) MSE as a function of the neural density (B) and tuning

width (C), for three values of �R; Pearson correlation coefficient ρdensity = (−0.66, −0.96, −0.81), ρwidth = (0.36, 0.59, 0.70).

https://doi.org/10.1371/journal.pcbi.1012240.g008
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tail in the stimulus distribution (Gaussian decoder DKL� 0.1, log-normal decoder, DKL�

0.04). As before, for increasing �R, solutions are characterized by an encoder with increasingly

narrow tuning curves and the locations of preferred stimuli sensitive to stimulus probability

(Fig 9B and 9E).

Finally, we test the prediction of our model regarding the dependence of the error on the

stimulus value by comparing it to experimental data. We borrow experimental measurements

of the so-called frequency-difference limens, the minimum detectable changes in the fre-

quency of a sinusoidal sound wave, from Ref. [61]. We employ the square root of the MSE

(RMSE) of the stimulus estimate as a proxy for perceptual resolution. Since the small number

of neurons imposes a fundamental bound to the coding performance, we scale the RMSE by a

Fig 9. Generative models for the distribution of acoustic frequencies. In all simulations, N = 12. The decoder is either Gaussian (top row) or log-normal

(bottom row). (A) Solutions of the optimization problem as a function of the target rate, Dð�RÞ (blue curve), in the rate-distortion plane. Inset:

environmental distribution of acoustic frequencies, π(f), and generative model fit for two different values of the target rate, colored according to the legend.

(B) Optimal tuning curves for different values of �R. Each dot represents a neuron: the position on the y-axis corresponds to its preferred stimulus, the size

of the dot is proportional to the tuning width, and the color refers to the amplitude (see legend in Fig 4). The curve on the right illustrates the stimulus

distribution, p(f). Insets show two examples. (C) Frequency discrimination as a function of acoustic frequency. Red markers are data points from three

different subjects, data from Ref. [61]. Solid curves are the RMSE for three values of �R, scaled by a factor of â ¼ ð281; 142; 107Þ, with variance explained R2

= (0.42, 0.41, 0.66). (D)-(F) Same as panels (A)-(C) in the case of a log-normal decoder. In panel F, â ¼ ð187; 104; 72Þ, with variance explained R2 = (0.92,

0.81, 0.96). Solid curves illustrate the mean across different initializations and shaded regions correspond to one standard deviation.

https://doi.org/10.1371/journal.pcbi.1012240.g009
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constant factor, â, which can be thought of as a population size gain, to allow for a comparison

(see Materials and methods).

In the case of a Gaussian decoder, the functional form of the RMSE does not capture the

behavior of the frequency-difference limens for any value of the target rate (Fig 9C). By using a

log-normal decoder, instead, we obtain a faithful description of the frequency-difference

limens for a broad range of values of �R (Fig 9F). These results show that, despite a large vari-

ability in the parameters of the encoder, as is commonly observed in biological systems, robust

predictions in the perceptual domain can be obtained and are consistent with experimental

data. In future work, it would be interesting to conduct a more systematic study on the aspects

of the generative model, e.g., properties of the functional form of the decoder, that can be

extracted from data.

Discussion

We studied neural representations that emerge in a framework in which populations of neu-

rons encode information about a continuous stimulus with simple tuning curves, but with the

additional assumption that the task of the decoder is to maintain a generative model of the

stimulus distribution. The consequence of the specific task imposed on the decoder is that the

encoder is set so as to maximize a bound to the mutual information between stimulus and neu-

ral activity, as postulated by the efficient coding hypothesis, subject to a constraint on the rela-

tive entropy between evoked and prior distributions over neural activity.

Under this constraint, different optimal solutions are obtained, corresponding to equally

accurate generative models but (qualitatively) different neural representations of the stimulus

(Fig 3). These representations differ in the degree of compression of information in the neural

responses, reflected in encoding (neural) properties (Figs 4 and 7), in the generative model

prior over neural activity (Fig 4D), in the generalization properties of the model (Fig 6), and in

the coding performance (Figs 4 and 8). For intermediate degrees of compression, the optimal

model is characterized by broad tuning curves and exhibits low coding error and an accurate

generative model with robust generalization properties. We emphasize that optimal solutions

are learned from a set of stimulus samples, and do not require full knowledge of the stimulus

prior as opposed to classic efficient coding models.

VAE, efficient coding, and learning from examples

The VAE can be viewed as a generalized efficient coding framework. The encoder is jointly

optimized with the decoder to maximize a variational approximation of the mutual informa-

tion under a constraint on neural resources. However, unlike classical efficient coding frame-

works in which the functional forms of the encoding accuracy and the resource constraint can

be chosen with a certain degree of arbitrariness [10–12, 30, 58, 59], here they are constrained

by a unique objective function that links them together. Thus encoding and decoding are cap-

tured in a unified approach [62]. In previous models, the form of the predictions, such as

power laws governing the dependence of the coding performance on the stimulus probability

density depended on the choice of the two terms in the loss function. Different combinations

of alternative choices of these two terms can yield the same prediction [12, 59]. Here, instead,

flexibility is achieved through the choice of the functional form of the generative model and

the bound on the resource constraint. Furthermore, our model exhibits broad tuning curves

for intermediate values of the target rate without further constraints (see section “Optimal tun-

ing width” and S3 Appendix).

Another difference with the classic efficient coding framework is that, here, the decoder

does not make use of the knowledge of the distribution of stimuli to perform: no ‘Bayesian
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inversion’ is needed. The benefit of an approximate Bayesian inversion (through a variational

approximation of the ‘inverted encoder’), is that solutions can be learned on the basis of data

samples [26, 27, 63]. This is an advantage of the VAE framework, as in typical natural situa-

tions the stimulus distribution is accessible only through observations.

VAEs in neuroscience: Related studies

VAEs are among the state of the art approaches to unsupervised learning, and in recent years

they have been applied in different contexts in neuroscience to model neural responses. Several

studies have considered neuroscience-inspired VAEs, in which the generative model was

based on a decomposition of natural images into sparse combinations of linear features [64]. It

was then paired with a powerful encoder, which models the sensory encoding process, and

specific assumptions on the prior distribution of the latent variables, to obtain representations

similar to the ones observed in the early visual pathway (in V1 and V2) [18, 26, 65]. In these

models, the simplicity of the generative distribution prevented posterior collapse. We note

that, in our case, we reverse this approach, by assuming a specific a simple and biologically

motivated form of the encoder (a set of tuning curves), while we allow for a flexible decoder.

In the context of higher visual areas instead, more complex generative models were needed

to capture neural representations [66]; to overcome the issue of posterior collapse, the authors

used a loss function akin to the one in Eq (22), but the value of β was chosen by hand. In doing

so, they obtained an empirical advantage in the semantic interpretability of the latent variables,

at the cost of abandoning the requirement that the loss function be a bound to the log-likeli-

hood. This, so-called, β-VAE approach was also employed in Ref. [67] to study optimal tuning

curves in a population coding model of spiking neurons similar to ours. In this study, however,

the population as a whole was constrained to emit one spike only, limiting the number of avail-

able activity patterns to N (the number of neurons). Moreover, the encoder and the decoder

are not optimized independently; this choice prevented the emergence of multiple alternative

neural representations in the β = 1 case. By varying β, the authors obtained neural representa-

tions which differed in the shape of the optimal tuning curves, but, since for β 6¼ 1 the ELBO

was not optimized, the resulting generative model was not accurate.

What causes the degeneracy of the optimal solutions?

Degeneracy in the space of solutions results from the flexibility of the generative model. In our

case, the generative model is a mixture of distributions: we restrict our choice to two examples

of parametric families, Gaussian and log-normal. Despite their simplicity, the generative

model is equipped with high approximation capabilities. Indeed, the marginal distribution,

pψ(x) = ∑r pψ(x|r)pψ(r), is a mixture of distributions, and, in the case of Gaussian decoder, is a

universal approximator of densities (i.e., a well-chosen Gaussian mixture can be used to

approximate any smooth density function [40, 41]).

With a population of N binary neurons the generative model consists, in principle, of a mix-

ture of 2N different distributions. The association between each activity pattern and the mean

and variance of mixture components is determined by the decoder, while the prior on the neu-

ral activity constrains how many distributions are effectively employed, as it governs the mix-

ing factors. At low rates, the prior distribution is not constrained by the encoder and can

exhibit high entropy. At low distortion, instead, latent variables are mapped to distinct output

distributions. The prior distribution over latent variables is constrained to capture the correla-

tions in neural activity imposed by narrow tuning curves; its entropy is thus suppressed, result-

ing in a limited number of non-vanishing mixing factors (and the performance of the model

degrades if the prior is not flexible enough to capture these correlations, S3 Fig). Intermediate
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rates balance these two limits, yielding a generative model with a sufficient number of mixing

factors and distinct output distributions, which reproduces the stimulus distribution and gen-

eralizes to unseen data [68–70].

Here, we focused on relatively simple, one-dimensional stimulus distributions. As the sta-

tistics of many natural features are dominated by low-frequency components (e.g., spatial fre-

quencies in natural images), and if powerful decoders are to represent deep brain areas [18,

66], we expect degeneracy in the space of solutions even in the case of multi-dimensional sti-

muli. In future work, it would be interesting to pair powerful decoders with biologically

inspired high-dimensional encoders, e.g., multidimensional tuning curves, and to characterize

the degeneracy of the solutions. In the case of more complex stimuli, the rate will represent a

more stringent condition in controlling the generalization properties of the model [69, 70].

Internal models and perception as inference

Our choice on the form of the decoder stems from the assumption that organisms interact

with their environment with the use of internal models. These allow them to perform inference

and make predictions. But what form do internal models take and what is their neural sub-

strate? In previous studies [17, 21, 22, 71], internal models were defined by conditioning the

probability of a stimulus, x, on the realization of a latent variable, z, through their joint distri-

bution, p(z, x) = p(x|z)p(z). The latent variables were chosen so as to allow for a semantic inter-

pretation, such as the presence or absence of a given image feature (e.g., Gabor patches or

texture features [18]). Sensory areas were then assumed to compute a posterior distribution

over the latent variable, q(z|x), and the neural activity was invoked as a way to represent this

posterior distribution, either approximately from samples [17, 22, 72], or as parameters of a

parametric distribution [19, 20].

We chose to define the generative model directly as a joint distribution of two random vari-

ables, p(r, x); r is the neural activity, while x is defined on the space of stimuli. Although we pre-

serve the mathematical structure of generative models proposed in neuroscience (e.g., the

Helmoltz machine and its more recents extensions [14, 19]), our interpretation is different. The

neural activity itself plays the role of a latent representation of the stimulus, but it is not set, a

priori, to some interpretable feature, such as the presence or the intensity of a Gabor filter in

models involving natural images (as in Refs. [17, 22]). In order to constrain sensory areas, we

assume the generative model to be implemented in downstream areas and we model its output

with a flexible function, a neural network, which outputs a point estimate and an uncertainty

about the value of the stimulus [39, 73]. This output corresponds to a perceptual representation

of the stimulus in the brain, and can be related to behavioral measurements (as in Fig 9C).

Mathematically, the encoding distribution, qθ(r|x), is obtained as a variational approxima-

tion of the posterior distribution of the generative model, pψ(r|x), as in previous work. This

distribution, however, is defined on the space of neural activity patterns, and not on a set of

abstract features. This choice has the drawback of the absence of a simple semantic interpreta-

tion of the latent features, but presents the advantage of a natural connection with an encoder

based on properties of a neural system, e.g., a set of tuning curves and a model of neural noise.

In the case of flexible generative models, different statistics of the latent variables turn out to be

optimal. In this sense, the choice of the encoder, as well as the prior of the generative model, is

useful to impose a structure on the characteristics of the neural representations.

Optimal tuning width

Our choice of encoding model allows us to compare our results with those of earlier studies

that considered the optimal arrangement of neurons with bell-shaped tuning curves in the
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presence of non-uniform stimulus distributions [10, 31]. While for higher values of the target

rate we recover the previously derived allocation of neural resources as a function of the stimu-

lus distribution, the behavior for lower values of the target rate is more intricate, and depends

on the specifics of the stimulus distribution. Thus, in our case, the constraint on neural

resources has a stronger impact on their optimal allocation than, for example, in Ref. [10],

where the bound on the mean activity in the population acts merely as a scaling factor, and the

behavior of the tuning curves is more constrained. In particular, in Ref. [10] the tuning width

was fixed a priori to be inversely proportional to the neural density, to enforce a fixed amount

of overlap between tuning curves: it was not optimized. This choice was made to avoid a com-

mon issue in this type of calculations: in the case of a one-dimensional stimulus and in the

asymptotic limit of infinitely many neurons, the maximization of the mutual information

yields the pathological solution of infinitely narrow tuning curves [74, 75]. Metabolic con-

straints on the neural activity do not solve the issue, as narrow tuning curves can exhibit a

moderate activity (as long as their amplitude is not too large).

In our framework, instead, the optimal tuning width and the amount of overlap between

tuning curves are both optimized and vary as a function of �R. Moreover, a regime with inter-

mediate values of the constraint, in which tuning curves are broad, exhibits both a smooth gen-

erative model (low DKL divergence) and a low MSE (Fig 4B and 4E). Broad tuning curves are

beneficial to obtain smooth generative models, while still allowing high for coding

performance.

Interpretation of the resource constraint

The constraint in Eq (20) involves the divergence between the evoked neural activity and its

marginal distribution according to the generative model. This formulation is different from

usual metabolic constraints which are designed to account for the energetic cost of neural

activity [8]. In general, the cost should increase with the magnitude of the perturbation

induced by a stimulus. Our more abstract formulation of the cost satisfies this property.

In our case, the prior distribution is parametrized by the biases and couplings of an Ising

model. As we have shown, there are multiple ways to achieve a statistically optimal internal

model and to minimize the DKL divergence between the two sides of Eq (26), which differ in

the value of the rate. At low rates, Eq (26) is approximated by relying on the optimization of

the encoder parameters which are set so as to make qθ(r|x) similar to the prior for all stimuli;

this then results in an unstructured coupling matrix in the prior distribution (Fig 4E, top).

Conversely, at high rates, the encoder has a well defined structure which achieves a low distor-

tion, and Eq (26) is approximated by optimizing the parameters of the prior and embedding

the structure of the average posterior distribution in the connectivity matrix (Fig 4E, bottom).

The value of the target rate can therefore be thought of as a cost of imposing structure in prior

(spontaneous activity), through circuit properties. Thus, our model suggest an alternative nor-

mative principle to govern neural couplings as compared to information maximization, as pro-

posed in Ref. [37].

A more concrete biological interpretation of the rate can be made by referring to the results

obtained in Ref. [71], in which the prior distribution over latent variables of an internal model

is related to the spontaneous neural activity. The authors start from the observation that in a

well-calibrated internal model the prior equals the mean posterior, Eq (26) [15]. By comparing

the average evoked activity to the spontaneous activity according to the DKL divergence, the

authors show that the two quantities become closer during development, and that this phe-

nomenology is specific to naturalistic stimuli. This finding is then proposed as evidence of an

internal model in primary visual cortex optimized for natural images, acquired gradually
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during development. In this picture, the prior distribution of the generative model is identified

with the spontaneous neural activity; we note, however, that there is no a priori reason to

expect this relationship.

We can also relate information-theoretic quantities to biophysical processes by invoking

results from statistical physics. A recent study has shown that the magnitude of the response of

a system to an external perturbation is bounded above by the Kullback-Leibler divergence

between the probability distributions describing the perturbed and unperturbed system [76].

Thus, if we view the marginal distribution as describing the unperturbed state of the neural

population, the rate term provides an upper bound on the magnitude of the response, i.e., the

change in firing rate, of the neural population upon a stimulus presentation. In turn, this quan-

tity is proportional to the spiking metabolic cost. Ultimately, one would like to derive formula-

tions of the abstract, information-theoretic costs that govern joint encoder-decoder models

from known microscopic biophysical processes.

Supporting information

S1 Fig. Qualitatively different optimal configurations. Same as Fig 3, in the case of lognor-

mal distribution over stimuli, pðxÞ ¼ LN ð1; 1Þ. Top row: high-distortion, low-rate solution.

Bottom row: low-distortion, high-rate solution. (A) Bell-shaped tuning curves of the encoder

(probability of neuron i to emit a spike, as a function of x). (B) Comparison between the stimu-

lus distribution, π(x) (green curve), and the generative distribution, pψ(x) = ∑r pψ(x|r)pψ(r)

(purple curve). (C) Numerical values of the ELBO, and the distortion and rate terms.

(PDF)

S2 Fig. Characterization of the optimal solutions as functions of the target rate in the case

of same parametric family of stimulus and generative distribution. Same as Fig 4, but with

a log-normal decoder. (A) Solutions of the ELBO optimization problem as a function of target

rate, Dð�RÞ (blue curve), and theoretical optimum, D = H(π) − R (black curve), in the rate-dis-

tortion plane. Values of �R where the solutions coincide with the theoretical optimum (grey

region). Since the decoder belong to the same parameteric family of the stimulus distribution,

it is possible to achieve optimal distortion at very low rates. (B) DKL divergence between the

stimulus and the generative distributions, as a function of �R. (C) Optimal tuning curves for dif-

ferent values of �R. Each dot represents a neuron: the position on the y-axis corresponds to its

preferred stimulus, the size of the dot is proportional to the tuning width, and the color refers

to the amplitude (see legend). The curve on the right illustrates the data distribution, π(x). (D)

Entropy of the prior distribution over neural activity, pψ(r), as a function of �R. Insets show two

configurations of the coupling matrices, with rows ordered according to the neurons’ pre-

ferred stimuli, and coupling strengths colored according to the legend. (E) MSE of the stimulus

estimate, obtained as the MAP (blue curve, scale on the left y-axis), or from samples (orange

curve, scale on the right y-axis), as a function of �R. Inset: MSE (MAP) as a function of the aver-

age tuning width.

(PDF)

S3 Fig. Characterization of the optimal solutions as functions of the target rate in the case

of less flexible prior on neural activity. Same as Fig 4, but with pψ(r) a product of indepen-

dent Bernoulli distributions. The decoder is Gaussian. (A) Solutions of the ELBO optimization

problem as a function of target rate, Dð�RÞ (blue curve), and theoretical optimum, D = H(π) −
R (black curve), in the rate-distortion plane. Values of �R where the solutions coincide with the

theoretical optimum (grey region). Solutions always depart from the optimal line, especially at

very high rate, due to the limited flexibility of the prior over neural activity. Inset: mutual
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information between stimuli and neural responses as a function of �R. (B) DKL divergence

between the stimulus and the generative distributions, as a function of �R. (C) Optimal tuning

curves for different values of �R. Each dot represents a neuron: the position on the y-axis corre-

sponds to its preferred stimulus, the size of the dot is proportional to the tuning width, and the

color refers to the amplitude (see legend). The curve on the right illustrates the data distribu-

tion, π(x). (D) Entropy of the prior distribution over neural activity, pψ(r), as a function of �R.

Insets show two configurations of the biases, h, as a function of the neuron preferred positions.

(E) MSE of the stimulus estimate, obtained as the MAP (blue curve, scale on the left y-axis), or

from samples (orange curve, scale on the right y-axis), as a function of �R. Inset: MSE (sam-

pling) as a function of the average tuning width.

(PDF)

S4 Fig. Characterization of the optimal solutions as functions of the target rate in the case

of a multimodal distribution. Same as Fig 4, but with π(x) a multimodal distribution: a mix-

ture of three Gaussians with means {−4, 0, 2}; variances {1, 0.5, 1}; and mixture coefficients

{0.3, 0.2, 0.5}. The decoder is Gaussian. (A) Solutions of the ELBO optimization problem as a

function of target rate, Dð�RÞ (blue curve), and theoretical optimum, D = H(π) − R (black

curve), in the rate-distortion plane. Values of �R where the solutions coincide with the theoreti-

cal optimum (grey region). Solutions depart from the optimal line when the rate is very low

(poor generative model) or very high (saturated distortion). Inset: mutual information

between stimuli and neural responses as a function of �R. (B) DKL divergence between the stim-

ulus and the generative distributions, as a function of �R. Insets: two examples of comparison

between stimulus (green curve) and generative distribution (purple curve). (C) Optimal tuning

curves for different values of �R. Each dot represents a neuron: the position on the y-axis corre-

sponds to its preferred stimulus, the size of the dot is proportional to the tuning width, and the

color refers to the amplitude (see legend). The curve on the right illustrates the data distribu-

tion, π(x). (D) Entropy of the prior distribution over neural activity, pψ(r), as a function of �R.

Insets show two configurations of the coupling matrices, with rows ordered according to the

neurons’ preferred stimuli, and coupling strengths colored according to the legend. (E) MSE

of the stimulus estimate, obtained as the MAP (blue curve, scale on the left y-axis), or from

samples (orange curve, scale on the right y-axis), as a function of �R. Inset: MSE (sampling) as a

function of the average tuning width.

(PDF)

S5 Fig. Characterization of optimal solutions as functions of training set size. Same as Fig

6, but with π(x) a multimodal distribution: a mixture of three Gaussians with means {−4, 0, 2};

variances {1, 0.5, 1}; and mixture coefficients {0.3, 0.2, 0.5}. The legend in panel A serves as a

legend for all panels. (A) Solutions of the ELBO optimization problem as functions of the tar-

get rate, for the training set (top) and for the test set (bottom). Top: distortion, Dtrnð
�RÞ, and

rate, Rtrnð
�RÞ (inset), for the training set as a function of the target rate, for different sizes of the

training set, colored according to the legend. For smaller training sets, at higher rates the

model tends to overfit the data, resulting in a lower training distortion than optimal (red line,

large training set, same data as in S4 Fig). Bottom: distortion, Dtstð
�RÞ, and rate, Rtstð

�RÞ (inset),

for the test set as functions of the target rate, for different sizes of the training set. For smaller

training sets, at higher rates the model does not generalize to unseen samples, resulting in a

large distortion. (B) Left: Kullback-Leibler divergence between the stimulus and the generative

distributions, as a function of �R, for different sizes of the training set. At higher rates, the gen-

erative model fits poorly the stimulus distribution. Right: examples of comparisons between

stimulus (green line) and generative distribution (red and orange line) at low (top) and high
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(bottom) rates, for different sizes of the training set, Ntrn = 100 and Ntrn = 2000, colored

according to the legend as in panel A. (C) Tuning width, wi, as a function of the location of a

preferred stimulus, ci (dots), at low (left) and high (right) rates, for different sizes of the train-

ing set, Ntrn = 100 and Ntrn = 2000. The grey curve represents the stimulus distribution, π(x).

(D) MSE in the stimulus estimate, obtained as the MAP, as a function of �R, for different sizes

of the training set.

(PDF)

S6 Fig. Comparison between Cramer-Rao bound and decoding error. MSE (MAP estimate)

(blue, green and yellow curves), and Cramer-Rao bound (inverse of the Fisher information,

orange curves), as in Eq (19) as a function of x.

(PDF)

S7 Fig. Optimal allocation of neural resources and coding performance. Same as Figs 7 and

8, in the case of a Gaussian distribution pðxÞ ¼ N ð0; 5Þ (same of Fig 3) and Gaussian decoder.

(A) Neural density as a function x (dashed curves) and power-law fits (solid curves, R2 = (0.96,

0.99, 0.99), γd = (0.99, 0.71, 0.64)), for three values of �R (low, intermediate, and high); the grey

curve illustrates the stimulus distribution. The density is computed by applying kernel density

estimation to the set of the preferred positions of the neurons. (B) Tuning width, wi, as a func-

tion of preferred stimuli, ci (dots), and power-law fits (solid curves, R2 = (0.09, 0.87, 0.92), γw =

(−, 0.77, 0.66)) for three values of �R; the grey curve illustrates the stimulus distribution. (C)

Tuning width, wi, as a function of the neural density, d(ci), for three values of �R; Pearson corre-

lation coefficient ρ = (0.30, −0.91, −0.97). (D) MSE (estimate obtained through sampling) as a

function of x (dashed curves), and power-law fits (solid curves, R2 = (0.99, 0.98, 0.62), γe =

(1.37, 1.73, 1.86)), for three values of �R. (E),(F) MSE as a function of the neural density (E) and

tuning width (F), for three values of �R; Pearson correlation coefficient ρdensity = (−0.84, −0.90,

−0.91), ρwidth = (0.38, 0.79, 0.90).

(PDF)

S8 Fig. Optimal allocation of neural resources and coding performance. Same as Figs 7 and

8, in the case of log-normal decoder. (A) Neural density as a function x (dashed curves) and

power-law fits (solid curves, R2 = (0.48, 0.94, 0.94), γd = (−, 0.60, 0.63)), for three values of �R
(low, intermediate, and high); the grey curve illustrates the stimulus distribution. The density

is computed by applying kernel density estimation to the set of the preferred positions of the

neurons. (B) Tuning width, wi, as a function of preferred stimuli, ci (dots), and power-law fits

(solid curves, R2 = (0.02, 0.90, 0.98), γw = (−, 0.74, 0.74)) for three values of �R; the grey curve

illustrates the stimulus distribution. (C) Tuning width, wi, as a function of the neural density, d
(ci), for three values of �R; Pearson correlation coefficient ρ = (−0.60, −0.87, −0.87). (D) MSE

(MAP estimate) as a function of x (dashed curves), and power-law fits (solid curves, R2 = (0.90,

0.91, 0.97), γe = (2.09, 2.10, 1.89)), for three values of �R. (E),(F) MSE as a function of the neural

density (E) and tuning width (F), for three values of �R; Pearson correlation coefficient ρdensity =

(−0.86, −0.94, −0.86), ρwidth = (0.39, 0.29, 0.66).

(PDF)

S9 Fig. Population coding model with bell-shaped tuning curves. (A) A one-dimensional

stimulus is encoded through bell-shaped tuning curves. The number of neurons whose pre-

ferred positions are a given stimulus, xi, is denoted by ni, while wi denotes the tuning width.

(B) Approximate scaling of the error in stimulus estimate, Δxi, when the response of a neuron,

with mean fj, is affected by a noise of standard deviation η.

(PDF)
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S1 Appendix. Properties of the solutions to the minimax problem and maximization of the

ELBO. Demonstrations of the 3 properties of the solutions to the minimax problem of the

Lagrangian, Eq (22), we listed in Materials and methods.

(PDF)

S2 Appendix. Numerical approaches in the case of large neural populations.

(PDF)

S3 Appendix. Optimally heterogeneous allocation of neural resources. We provide an alter-

native derivation, based on scaling arguments, of the results in Ref. [10].

(PDF)
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